1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
3 years ago
5

What is 4³ written in expanded form?​

Mathematics
2 answers:
olga55 [171]3 years ago
3 0

Answer:

4³=4*4*4 is a required expanded form.

mestny [16]3 years ago
3 0
It’s 4•4•4 ! So that makes it 64!
You might be interested in
What is 5.316 - 1.942 (show ur work)
Fiesta28 [93]

Answer:

3.374

Step-by-step explanation:

\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}

\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}

\begin{matrix}\:\:&5&.&3&1&6\\ -&1&.&9&4&2\end{matrix}

\mathrm{Subtract\:each\:column\:of\:digits,\:starting\:from\:the\:right\:and\:working\:left}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:6-2=4

\frac{\begin{matrix}\:\:&5&.&3&1&\textbf{6}\\ -&1&.&9&4&\textbf{2}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\textbf{4}\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}

\frac{\begin{matrix}\:\:&5&.&3&\textbf{1}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\mathrm{The\:bottom\:number\:is\:larger\:than\:the\:upper\:number.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}

\mathrm{The\:top\:digit\:is\:not\:bigger\:than\:the\:bottom\:one.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}

\frac{\begin{matrix}\:\:&5&.&\textbf{3}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Borrow\:}1\mathrm{\:from\:}5\mathrm{.\:\:The\:remainder\:is\:}4

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&10&\:\:&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&3&1&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{\:\:}&\:\:&\:\:&\:\:&4\end{matrix}}

\mathrm{Add\:}1\mathrm{\:ten\:to\:}3:\quad \:10+3=13

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{13}&\:\:&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{3}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Borrow\:}1\mathrm{\:from\:}13\mathrm{.\:\:The\:remainder\:is\:}12

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&10&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Add\:}1\mathrm{\:ten\:to\:}1:\quad \:10+1=11

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:11-4=7

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{7}&4\end{matrix}}

\mathrm{Place\:the\:decimal\:point\:in\:the\:answer\:directly\:below\:the\:decimal\:points\:in\:the\:terms}

\frac{\begin{matrix}\:\:&4&\textbf{\:\:}&12&11&\:\:\\ \:\:&\linethrough{5}&\textbf{.}&\linethrough{13}&\linethrough{1}&6\\ -&1&\textbf{.}&9&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\textbf{.}&3&7&4\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:4-1=3

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&12&11&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&\linethrough{13}&\linethrough{1}&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{3}&.&3&7&4\end{matrix}}

=3.374

Hence the correct answer is 3.374

7 0
1 year ago
The sum of three consecutive integers is 267. What is the largest integer?
Stella [2.4K]

Answer:

let integers be x,2x, 3x respectively

x+2x+3x= 267

6x= 267

x=267/6= 44.5

2x= 44.5*2= 89

3x= 44.5*3= 133.5

largest integer = 133.5

hope it helps

plz mark as brainliest

5 0
3 years ago
30 PTS!!! ANYONE GOOD AT MATH PLS HELP!
siniylev [52]

Answer:

\frac{2}{\sqrt{5} }

Step-by-step explanation:

To solve this, all we need to do is draw a triangle.  

From the arctan(2) we can deduce that tan(x)=\frac{2}{1}

From that, we can draw our triangle as we know that tan(x) is the opposite side over the adjacent side. Attached is that triangle. Through the Pythagorean Theorem, we can find that the hypotenuse of this right triangle is  \sqrt{5}

Now all we need to do is take the sin of this triangle, which is the opposite side over the hypotenuse

This gives us the value of \frac{2}{\sqrt{5} } which is our answer.

8 0
3 years ago
Daniel's gross weekly pay is $882.96. When he gets his first paycheck, Daniel notices that payroll taxes have already been deduc
Ulleksa [173]

Answer: 1) $54.74

2) $12.80

Step-by-step explanation:

6 0
2 years ago
A biologist has been observing a tree's height. This type of tree typically grows by 0.22 feet each month. Fifteen months into t
Lyrx [107]

Data:

x: number of months

y: tree's height

Tipical grow: 0.22

Fifteen months into the observation, the tree was 20.5 feet tall: x=15 y=20.5ft (15,20.5)

In this case the slope (m) or rate of change is the tipical grow.

m=0.22

To find the line's slope-intercep equation you use the slope (m) and the given values of x and y (15 , 20.5) in the next formula to find the y-intercept (b):

\begin{gathered} y=mx+b \\ 20.5=0.22(15)+b \\ 20.5=3.3+b \\ 20.5-3.3=b \\ 17.2=b \end{gathered}

Use the slope(m) and y-intercept (b) to write the equation:

\begin{gathered} y=mx+b \\  \\ y=0.22x+17.2 \end{gathered}A) This line's slope-intercept equation is: y=0.22x+17.2

B) To find the height of the tree after 29 months you substitute in the equation the x for 29 and evaluate to find the y:

\begin{gathered} y=0.22(29)+17.2 \\ y=6.38+17.2 \\  \\ y=23.58 \end{gathered}Then, after 29 months the tree would be 23.58 feet in height

C) In this case as you have the height and need to find the number of moths you substitute the y for 29.96feet and solve the equation for x, as follow:

\begin{gathered} 29.96=0.22x+17.2 \\ 29.96-17.2=0.22x \\ 12.76=0.22x \\ \frac{12.76}{0.22}=x \\  \\ 58=x \end{gathered}Then, after 58 months the tree would be 29.96feet tall
3 0
1 year ago
Other questions:
  • The weather report says the temperature is 20°C and will drop 5°C per hour for the next 6 hours. Daryl plans to be gone for at l
    10·2 answers
  • :
    14·1 answer
  • May someone help me with this
    8·2 answers
  • A group of friends chartered a deep-sea fishing boat out of Destin, FL. The graph below represents the total cost, in dollars, o
    14·2 answers
  • What is<br> 3a+6b= 4 for b<br> Really need help
    13·1 answer
  • A4 Find length AC<br> idk how to do this someone help me
    11·2 answers
  • If f(x)=-5x +2 and g(x)=1/2x +4, find f(g(-6)).
    5·1 answer
  • Mr. Shand had $59.75 in his bank account, but then he bought some new ties and some pancakes. After the purchase, he was in debt
    13·1 answer
  • You have $40 in your wallet, but you do not want to spend all of it. You want to have at least some money left. You find a shirt
    10·2 answers
  • Find the number of paths of length 4 between two different vertices in K5​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!