Answer:
k = -9.
Step-by-step explanation:
As the triangle is right-angled at Q, by Pythagoras:
PR^2 = PQ^2 + RQ^2
So, substituting the given data and using the distance formula between 2 points:
(7 - 1)^2 + (k - 4)^2 = (-4-4)^2 + (-3-1)^2 + (7 - (-3))^2 + (k - (-4))^2
36 + (k - 4)^2 = 64 + 16 + 100 + ( k + 4)^2
(k - 4)^2 - (k + 4)^2 = 180 - 36
k^2 - 8k + 16 - (k^2 + 8k + 16) = 144
-16k = 144
k = -9.
Answer:
C is a letter on the alphabet
Step-by-step explanation:
you havent included any pictures so i dont know what you mean
PR=9(43)-31
PR=387-31
PR=356
I think that's the answer :)
A. Factor the numerator as a difference of squares:

c. As

, the contribution of the terms of degree less than 2 becomes negligible, which means we can write

e. Let's first rewrite the root terms with rational exponents:
![\displaystyle\lim_{x\to1}\frac{\sqrt[3]x-x}{\sqrt x-x}=\lim_{x\to1}\frac{x^{1/3}-x}{x^{1/2}-x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto1%7D%5Cfrac%7B%5Csqrt%5B3%5Dx-x%7D%7B%5Csqrt%20x-x%7D%3D%5Clim_%7Bx%5Cto1%7D%5Cfrac%7Bx%5E%7B1%2F3%7D-x%7D%7Bx%5E%7B1%2F2%7D-x%7D)
Next we rationalize the numerator and denominator. We do so by recalling


In particular,


so we have

For

and

, we can simplify the first term:

So our limit becomes
Answer:
x + 150 deg = 180deg (being co-interior angles)
:. x = 30 deg
2. y^2 + 7= 32 ( opposite sides of parallelogram are equal)
or, y^2 = 25
or y^2 = 5^2
: . y = 5
3. k= 2y^2 ( opposite sides of parallelogram are equal)
or, k = 2× 5^2
: . k = 50