Answer:
s = -1
Step-by-step explanation:
-7/3(12s + 24) + 14 = -14
-28s - 56 + 14 = -14
-28s - 42 = -14
-28s = 28
s = -1
Answer:
The radius of the circle is ![24\ hm](https://tex.z-dn.net/?f=24%5C%20hm)
Step-by-step explanation:
we know that
The circumference of a circle is equal to
![C=2\pi r](https://tex.z-dn.net/?f=C%3D2%5Cpi%20r)
In this problem we have
![C=150.7968\ hm](https://tex.z-dn.net/?f=C%3D150.7968%5C%20hm)
![\pi=3.1416](https://tex.z-dn.net/?f=%5Cpi%3D3.1416)
substitute and solve for r
![150.7968=2(3.1416)r](https://tex.z-dn.net/?f=150.7968%3D2%283.1416%29r)
![r=150.7968/(2(3.1416))=24\ hm](https://tex.z-dn.net/?f=r%3D150.7968%2F%282%283.1416%29%29%3D24%5C%20hm)
Triangles ABC and ADE are similar triangles. That means the sides are all scaled by the same factor.
To go from side BC to side DE, you multiply by 1.25. That means 1.25 is your scale factor. Now apply that factor to the bottom side to get your answer.
Side AB is 6. That means side AD is 6 x 1.25 = 7.5. That means x = 7.5 - 6 = 1.5
Answer:
Studying every single instance of a thing is impractical or too expensive
Step-by-step explanation:
With sampling we a have a lot of data without much effort.
so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then <u>subtract the area of the circle from that of the hexagon's</u>, what's leftover is what we didn't subtract, namely the shaded part.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( \frac{180}{n} \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=\frac{9}{2} \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Ccot%5Cstackrel%7B%5Cstackrel%7Bdegrees%7D%7B%5Cdownarrow%20%7D%7D%7B%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~%20%5Cbegin%7Bcases%7D%20n%3D%5Ctextit%7Bnumber%20of%20sides%7D%5C%5C%20s%3D%5Ctextit%7Blength%20of%20a%20side%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D%5Cstackrel%7Bhexagon%7D%7B6%7D%5C%5C%20s%3D%5Cfrac%7B9%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Cleft%28%20%5Ccfrac%7B9%7D%7B2%7D%20%5Cright%29%5E2%20%5Ccot%5Cleft%28%20%5Ccfrac%7B180%7D%7B6%7D%20%5Cright%29)
![A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243\sqrt{3}}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=\frac{4}{5} \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Ccfrac%7B9%5E2%7D%7B2%5E2%7D%20%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%7D%7B8%7D%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%5Csqrt%7B3%7D%7D%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D%5Cfrac%7B4%7D%7B5%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%5E2%5Cimplies%20A%3D%5Ccfrac%7B16%5Cpi%20%7D%7B25%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{area of the hexagon}}{\cfrac{243\sqrt{3}}{8}}~~ - ~~\stackrel{\textit{area of the circle}}{\cfrac{16\pi }{25}}\implies \cfrac{6075\sqrt{3}-128\pi }{200}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20hexagon%7D%7D%7B%5Ccfrac%7B243%5Csqrt%7B3%7D%7D%7B8%7D%7D~~%20-%20~~%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20circle%7D%7D%7B%5Ccfrac%7B16%5Cpi%20%7D%7B25%7D%7D%5Cimplies%20%5Ccfrac%7B6075%5Csqrt%7B3%7D-128%5Cpi%20%7D%7B200%7D)