Answer:
A is correct
Step-by-step explanation:
I believe it is C, but i'm not 100% on that
Given:
y = x - 6 (1)
for the line
x² + y² = r² (2)
for the circle
When the line intercepts the circle, the x and y values will be equal.
Equate the values of y by substituting (1) into (2).
x² + (x - 6)² = r²
x² + x² - 12x + 36 = r²
2x² - 12x + 36 = r²
Answer: r² = 2x² - 12x + 36
keeping in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})~\hspace{10em} slope = m\implies 6 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-3)=6[x-(-1)]\implies y+3=6(x+1) \\\\\\ y+3=6x+6\implies y=6x+3\implies -6x+y=3\implies 6x-y=-3](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29~%5Chspace%7B10em%7D%20slope%20%3D%20m%5Cimplies%206%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%28-3%29%3D6%5Bx-%28-1%29%5D%5Cimplies%20y%2B3%3D6%28x%2B1%29%20%5C%5C%5C%5C%5C%5C%20y%2B3%3D6x%2B6%5Cimplies%20y%3D6x%2B3%5Cimplies%20-6x%2By%3D3%5Cimplies%206x-y%3D-3)
Answer:
A.
Step-by-step explanation: