Answer: ionic bond
Explanation: Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Answer:
One that is eaten by other animals.
Explanation:
The question is incomplete, however, the statements associated with this question is given in the comments and here as well:
Neither facilitated diffusion nor osmosis requires cell energy.
Diffusion of gases and other small molecules requires no energy on the part of the cell.
Active transport requires cell energy and osmosis doesn't.
Both endocytosis and active transport require cell energy.
Answer:
The correct answer is - Active transport requires cell energy and osmosis doesn't.
Explanation:
Osmosis is an example of passive transport as it does not require energy to facilitate the movement of solvent In the process of osmosis,. It moves from high concentration to low concentration through the semipermeable membrane which is along the gradient so no requirement of energy.
In the case of Active transport, it requires energy to facilitate the movement of transport as it is the movement of a substance from low concentration to a high concentration area that is against the concentration gradient.
Large molecules such as hormones materials are expelled from cells during exocytosis
<u>Explanation:</u>
The materials inside the cells are transferred to the outside of the cell and this manner is termed as Exocytosis. This method is termed as a kind of active transport since it needs energy for this transformation process. One of the major purposes of this process is to discharge trash matters like hormones and proteins.
For a cell to cell transmission and chemical signal messaging these methods are essential. Proteins that are newly generated are transferred to the peak of the plasma membrane by exocytosis. There are three general pathways of exocytosis.
Answer:
to have symmetry on your body from side
to side