Answer:
0.430625=0.431
Step-by-step explanation:
Answer:
0.430625 = 0.431
Step-by-step explanation:
Let W represent winning, D represent a draw and L represent a loss.
12+ points can be garnered in each of the following ways.
6W 0D 0L
5W 1D 0L
5W 0D 1L
4W 2D 0L
4W 1D 1L
4W 0D 2L
3W 3D 0L
The probability of getting 12+ points is the sum of all these 7 probabilities.
Knowing that P(W) = 0.5
P(D) = 0.1
P(L) = 0.4
P(6W 0D 0L) = [6!/(6!0!0!)] 0.5⁶ 0.1⁰ 0.4⁰ = 0.015625
P(5W 1D 0L) = [6!/(5!1!0!)] 0.5⁵ 0.1¹ 0.4⁰ = 0.01875
P(5W 0D 1L) = [6!/(5!0!1!)] 0.5⁵ 0.1⁰ 0.4¹ = 0.075
P(4W 2D 0L) = [6!/(4!2!0!)] 0.5⁴ 0.1² 0.4⁰ = 0.09375
P(4W 1D 1L) = [6!/(4!1!1!)] 0.5⁴ 0.1¹ 0.4¹ = 0.075
P(4W 0D 2L) = [6!/(4!0!2!)] 0.5⁴ 0.1⁰ 0.4² = 0.15
P(3W 3D 0L) = [6!/(3!3!0!)] 0.5³ 0.1³ 0.4⁰ = 0.0025
The probability of getting 12+ points = 0.015625 + 0.01875 + 0.075 + 0.09375 + 0.075 + 0.15 + 0.0025 = 0.430625
Read more on Brainly.com - brainly.com/question/14850440#readmore
A. This expression has 4 terms
B. The constants are -5, 3, 72 and 10
C. The third term is 72
D. The coefficient is y
Answer:
0.7486 = 74.86% observations would be less than 5.79
Step-by-step explanation:
I suppose there was a small typing mistake, so i am going to use the distribution as N (5.43,0.54)
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The general format of the normal distribution is:
N(mean, standard deviation)
Which means that:

What proportion of observations would be less than 5.79?
This is the pvalue of Z when X = 5.79. So



has a pvalue of 0.7486
0.7486 = 74.86% observations would be less than 5.79
If you are comparing the triangles the answer is D