40 i belive but im not sure
Answer: Last option.
Step-by-step explanation:
For this exercise you need to find the Discriminant.
The formula used to find the Discriminant, is the following:

In this case, given the Quadratic equation:

You can identify that:

Knowing those values, you must substitute them into the formula and then you must evaluate in order to find the Discriminant.
You get that this is:

By definition, if:
Then the Quadraitc equation has 2 nonreal solutions.
Answer:
8
Step-by-step explanation:
Given:
Annuity at time (n + 1) = 13.776
(1 + i)ⁿ = 2.476
Now,

here, d = 
thus,

or
d = 0.1071
therefore,
d = 
or
0.1071 = 
or
0.1071 + 0.1071i = i
or
i = 0.1199
now,
(1 + i)ⁿ = 2.476
or
(1 + 0.1199)ⁿ = 2.476
1.1199ⁿ = 2.476
taking log both sides
n × log(1.1199) = log(2.476)
or
n = 8.006 ≈ 8
hence,
the answer is 8
Answer:
(0.5,0)
Step-by-step explanation:
The line of symmetry is if you drew a line straight down the middle (vertically) of the parabola and where it would hit the x-axis