Answer:
Step-by-step explanation:
Number of vertices
3
Variable constraints
a>0 and b>0
Diagonal lengths
(data not available)
Height
b
Area
A = (a b)/2
Centroid
x^_ = (a/3, b/3)
Mechanical properties:
Area moment of inertia about the x-axis
J_x invisible comma x = (a b^3)/12
Area moment of inertia about the y-axis
J_y invisible comma y = (a^3 b)/12
Polar moment of inertia
J_zz = 1/12 a b (a^2 + b^2)
Product moment of inertia
J_x invisible comma y = -1/24 a^2 b^2
Radii of gyration about coordinate axes
r_x = b/sqrt(6)
r_y = a/sqrt(6)
Distance properties:
Side lengths
a | sqrt(a^2 + b^2) | b
Hypotenuse
sqrt(a^2 + b^2)
Perimeter
p = sqrt(a^2 + b^2) + a + b
Inradius
r = 1/2 (-sqrt(a^2 + b^2) + a + b)
Circumradius
R = 1/2 sqrt(a^2 + b^2)
Generalized diameter
sqrt(a^2 + b^2)
Convexity coefficient
χ = 1
Mean triangle area
A^_ = (a b)/24
Answer:
b = 80
Step-by-step explanation:
-44 + b = 36
b = 36 - (-44)
b = 36 + 44
b = 80
Hope that helps!
Answer:
(a).4.36 mph
(b) No
Step-by-step explanation:
We are given that
Jan covered distance,s1 =2 miles
Speed of Jan, a=3 mph
s2=1 mile
b=8mph
a.
We have to find the Jan' s average speed for the entire trip.
Average speed =
Using the formula
Average speed=
b.
Average speed with two speed
Average of Jan’s two speeds

=

Hence, the average speed in part (a) is not equal to the average of Jan’s two speeds.