The order to us solve is:
- Parentheses
- Multiplication
- Sum and subtraction
Let's go:

Therefore, the result is 62.2.
Answer:
1. t = 0.995 s
2. h = 15.92 ft
Step-by-step explanation:
First we have to look at the following formula
Vf = Vo + gt
then we work it to clear what we want
Vo + gt = Vf
gt = Vf - Vo
t = (Vf-Vo)/g
Now we have to complete the formula with the real data
Vo = 32 ft/s as the statement says
Vf = 0 because when it reaches its maximum point it will stop before starting to lower
g = -32,16 ft/s² it is a known constant, that we use it with the negative sign because it is in the opposite direction to ours
t = (0 ft/s - 32 ft/s) / -32,16 ft/s²
we solve and ...
t = 0.995 s
Now we will implement this result in the following formula to get the height at that time
h = (Vo - Vf) *t /2
h = (32 ft/s - 0 ft/s) * 0.995 s / 2
h = 32 ft/s * 0.995 s/2
h = 31.84 ft / 2
h = 15.92 ft
Answer= 16
Work=
1. Multiply each side by 1/5 (aka divide them by 5). This leaves 3, 4 and 9.
2. Add all the sides. 3 + 4 + 9 = 16. That is the perimeter
We are given that revenue of Tacos is given by the mathematical expression
.
(A) The constant term in this revenue function is 240 and it represents the revenue when price per Taco is $4. That is, 240 dollars is the revenue without making any incremental increase in the price.
(B) Let us factor the given revenue expression.

Therefore, correct option for part (B) is the third option.
(C) The factor (-7x+60) represents the number of Tacos sold per day after increasing the price x times. Factor (4+x) represents the new price after making x increments of 1 dollar.
(D) Writing the polynomial in factored form gives us the expression for new price as well as the expression for number of Tacos sold per day after making x increments of 1 dollar to the price.
(E) The table is attached.
Since revenue is maximum when price is 6 dollars. Therefore, optimal price is 6 dollars.
Is there a question that goes with this command?