Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.
$1.25 because if you bought 2 packs of them it would be $2.50 so you would be 0.09 cheaper
<em>To convert decimal number 1</em><em>2</em><em>3</em><em> to quinary, follow these steps:</em>
<em>1</em><em>.</em><em> </em><em>Divide 1</em><em>2</em><em>3</em><em> </em><em>by 5 keeping notice of the quotient and the remainder.</em>
<em>2</em><em>.</em><em>Continue dividing the quotient by 5 until you get a quotient of zero.</em>
<em>3</em><em>.</em><em> </em><em>Then just write out the remainders in the reverse order to get quinary equivalent of decimal number 1</em><em>2</em><em>3</em><em>.</em>