Answer:
8x+8y
Step-by-step explanation:
y + 3x + 4y + 2x + 3y +3x
<em>With</em><em> </em><em>this</em><em> </em><em>we</em><em> </em><em>group</em><em> </em><em>x</em><em> </em><em>with</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>y</em><em> </em><em>with</em><em> </em><em>y</em><em> </em><em>and </em><em>in</em><em> </em><em>ascending</em><em> </em><em>order</em><em> </em><em>so</em><em> </em><em>x</em><em> </em><em>comes</em><em> </em><em>before</em><em> </em><em>y</em>
3x+2x+3x
And the y with y
y+4y+3y
Which is;
3x+2x+3x+y+4y+3y
8x+8y
If

, then we can write

and since this is continuous for all

, the limit as

will be
Answer:
Step-by-step explanation:
The Thomas Supply Company Inc. is a distributor of gas-powered generators. As with any business, the length of time customers take to pay their invoices is important. Listed below, arranged from smallest to largest, is the time, in days, for a sample of The Thomas Supply Company Inc. invoices.
13 13 13 20 26 27 30 32 34 34 35 35 36 37 38
41 41 41 42 44 47 47 48 50 54 55 56 62 67 82
Click here for the Excel Data File
(Round your answers to 2 decimal places.)
Determine the first and third quartiles.
Determine the second decile and the eighth decile.
Determine the 67th percentile.
Answer:
0
Step-by-step explanation:
If ∑aₙ converges, then lim(n→∞)aₙ = 0.
Using ratio test, we can determine if the series converges:
If lim(n→∞) |aₙ₊₁ / aₙ| < 1, then ∑aₙ converges.
If lim(n→∞) |aₙ₊₁ / aₙ| > 1, then ∑aₙ diverges.
lim(n→∞) |(100ⁿ⁺¹ / (n+1)!) / (100ⁿ / n!)|
lim(n→∞) |(100ⁿ⁺¹ / (n+1)!) × (n! / 100ⁿ)|
lim(n→∞) |(100 / (n+1)|
0 < 1
The series converges. Therefore, lim(n→∞)aₙ = 0.