Step-by-step explanation:
<h3>
<em><u>Given</u></em><em><u>:</u></em></h3>
Length of the rectangle = 6.5 m
Width of the rectangule = 7.3 m
<h3>
<em><u>Then</u></em><em><u>:</u></em></h3>
<u>First</u><u> </u><u>case</u><u>,</u>
Area of the rectangle
= length × width
= 6.5 m × 7.3 m
= <em><u>47.45</u></em><em><u> </u></em><em><u>s</u></em><em><u>q</u></em><em><u>.</u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>i</u></em><em><u>)</u></em>
<u>Second</u><u> </u><u>case</u><u>,</u>
Perimeter of the rectangle
= 2(length + width)
= 2(6.5 + 7.3)m
= 2 × 13.8 m
= <em><u>27</u></em><em><u>.</u></em><em><u>6</u></em><em><u> </u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>ii</u></em><em><u>)</u></em>
Categorical data may or may not have some logical order
while the values of a quantitative variable can be ordered and
measured.
Categorical data examples are: race, sex, age group, and
educational level
Quantitative data examples are: heights of players on a
football team; number of cars in each row of a parking lot
a) Colors of phone cover - quantitative
b) Weight of different phones - quantitative
c) Types of dogs - categorical
d) Temperatures in the U.S. cities - quantitative
X=9
3x-12=x+6
2x-12=6
2x=18
X=9