1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
6

12)If p and p' are the length of the perpendiculars drawn from the points (+-root a2-b2,0) to the line x/a cosA + y/b sinA = 1,

prove that: p x p' = b2.

Mathematics
1 answer:
Elden [556K]2 years ago
5 0

Answer:

Kindly refer to below explanation.

Step-by-step explanation:

Given equation of line:

\dfrac{x}{a}cos\theta+ \dfrac{y}{b}sin\theta =1\\OR\\\dfrac{x}{a}cos\theta+ \dfrac{y}{b}sin\theta-1=0

Given points are:

(\sqrt{a^2-b^2},0), (-\sqrt{a^2-b^2},0)

Formula for distance between a point and a line is:

If the point is (m, n) and equation of line is Ax+By+C = 0

Then, perpendicular distance between line and points is:

Distance = \dfrac{|Am+Bn+C|}{\sqrt{A^2+B^2}}

Here,

A = \dfrac{x}{a}cos\theta\\B = \dfrac{y}{b}sin\theta\\C = -1

For the first point:

m = \sqrt{a^2-b^2}, n = 0

By the above formula:

p and p' can be calculated as:

p\times p' =\\\Rightarrow  \dfrac{|\dfrac{cos\theta}{a}\times \sqrt{a^2-b^2}+ 0 -1|}{\sqrt{\dfrac{cos^2\theta}{a^2}+\dfrac{sin^2\theta}{b^2}}}\times \dfrac{|-\dfrac{cos\theta}{a}\times \sqrt{a^2-b^2}+ 0 -1|}{\sqrt{\dfrac{cos^2\theta}{a^2}+\dfrac{sin^2\theta}{b^2}}}\\\Rightarrow \dfrac{1-(\sqrt{a^2-b^2}\times \frac{cos\theta}{a})^2}{\dfrac{cos^2\theta}{a^2}+\dfrac{sin^2\theta}{b^2}}}

Formula used:

(x+y)(x-y) = x^2 - y^2

\Rightarrow \dfrac{\dfrac{a^2-a^2cos^2\theta+b^2cos^2\theta}{a^2}}{\dfrac{b^2cos^2\theta+a^2sin^2\theta}{a^2b^2}}\\\Rightarrow b^2(\dfrac{a^2sin^2\theta+b^2cos^2\theta}{a^2sin^2\theta+b^2cos^2\theta})\\\Rightarrow b^2

(Using the identity:

sin^2\theta +cos^2\theta = 1)

(Hence provded)

You might be interested in
The corners of a meadow are shown on a coordinate grid. Ethan wants to fence the meadow. What length of fencing is required?
Nuetrik [128]

Answer:

34.6 units

Step-by-step explanation:

The lenght of fencing required is the total distance between point A to B, B to C, C to D, and D to A. That is the distance between all 4 corners of the meadow.

The coordinates of the corners of the meadow is shown on a coordinate plane in the attachment. (See attachment below).

Let's use the distance formula to calculate the distance between the 4 corners of the meadow using their coordinates as follows:

Distance between point A(-6, 2) and point B(2, 6):

AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Let,

A(-6, 2)) = (x_1, y_1)

B(2, 6) = (x_2, y_2)

AB = \sqrt{(2 - (-6))^2 + (6 - 2)^2}

AB = \sqrt{(8)^2 + (4)^2}

AB = \sqrt{64 + 16} = \sqrt{80}

AB = 8.9 (nearest tenth)

Distance between B(2, 6) and C(7, 1):

BC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Let,

B(2, 6) = (x_1, y_1)

C(7, 1) = (x_2, y_2)

BC = \sqrt{(7 - 2)^2 + (1 - 6)^2}

BC = \sqrt{(5)^2 + (-5)^2}

BC = \sqrt{25 + 25} = \sqrt{50}

BC = 7.1 (nearest tenth)

Distance between C(7, 1) and D(3, -5):

CD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Let,

C(7, 1) = (x_1, y_1)

D(3, -5) = (x_2, y_2)

CD = \sqrt{(3 - 7)^2 + (-5 - 1)^2}

CD = \sqrt{(-4)^2 + (-6)^2}

CD = \sqrt{16 + 36} = \sqrt{52}

CD = 7.2 (nearest tenth)

Distance between D(3, -5) and A(-6, 2):

DA = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Let,

D(3, -5) = (x_1, y_1)

A(-6, 2) = (x_2, y_2)

DA = \sqrt{(-6 - 3)^2 + (2 - (-5))^2}

DA = \sqrt{(-9)^2 + (7)^2}

DA = \sqrt{81 + 49} = \sqrt{130}

DA = 11.4 (nearest tenth)

Length of fencing required = 8.9 + 7.1 + 7.2 + 11.4 = 34.6 units

8 0
2 years ago
A Bar of steel is 340 cm long Issa cuts two 55cm lengths of the bar He then cuts the rest into as many 40cm lengths as possible
Assoli18 [71]

Answer:

5 bars

Step-by-step explanation:

340-(55+55)

230÷40

5.75

6 0
3 years ago
70, 000 grams= kilograms
Vesnalui [34]
70,000 grams is 70 kilograms
8 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Read 2 more answers
5.125 divided by 7.1
Olegator [25]

Answer:

0.72

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • Sue has an annual interest income of $3390 from two investments. She has $10,000 more invested at 8% than she has at 6%. Find th
    11·1 answer
  • Solve the equation<br><br> 2.5 - 2.5X = 7
    9·2 answers
  • Wanting someone to help me with the procedures<br>n²+n=120<br><br>​
    9·1 answer
  • Which of the following is true of irrational numbers? *
    14·1 answer
  • What is the greatest common factor of 24s3, 12s4, and 18s?
    14·1 answer
  • A ​ 75 inch is cut into two pieces. One piece is four times the length of the other. Find the length of the shorter piece.
    12·1 answer
  • Which value of "X" is a solution to this equation?<br> 4x2 +22x +10
    5·1 answer
  • a collector found a bone near former mayan territory. after careful research it has been determined that the bone lost about 15%
    15·1 answer
  • I need assistanceeeee
    7·1 answer
  • Diego measured the length of an eraser to be 6 cm. The actual length of the eraser is 6.5 cm. Which of these is closest to the p
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!