Let x be the cost of 1 pen
then cost of 1 notebook = x + 8.20
Let y be the number of pens Tan buys
then number of notebooks Tan buys = y/4
She spent $26 more on books than on pens which means
Cost of notebooks - Cost of pens = 26
(x + 8.20) * y/4 - xy = 26
Sinplifying it
(xy + 8.20y)/4 - xy = 26
(xy + 8.20y - 4xy)/4 = 26
8.20y - 3xy = 104
She spent $394 which means
Cost of notebooks + Cost of pens = 394
(x + 8.20) * y/4 + xy = 394
Simplifying it
(xy + 8.20y)/4 + xy = 394
(xy + 8.20y + 4xy)/4 = 394
8.20y + 5xy = 1576
Now, we have two equations,
(1) 8.20y - 3xy = 104
(2) 8.20y + 5xy = 1576
Now we need to find a third equation with either x or y as the subject of any of both the previous equations.
Let's make y the subject of (2) equation
8.20y + 5xy = 1576
y(8.20 + 5X) = 1576
(3) y = 1576/(8.20 + 5x)
Let's substitute the new value of y from (3) into (1) because we rearranged (2) to from (3)
8.20y - 3xy = 104
y(8.20 - 3x) = 104
y = 104/(8.20 - 3x)
1576/(8.20 + 5x) = 104/(8.20 - 3x)
1576 * (8.20 - 3x) = 104 * (8.20 + 5x)
12923.2 - 4728x = 852.8 + 520x
12923.2 - 852.8 = 4728x + 520x
12070.4 = 5248x
12070.4/5248 = x
x = 2.3
Now find the value of y by substituting the value of x in either equation, preferably (3)
y = 1576/(8.20 + 5x)
y = 1576/(8.20 + 5 * (2.3))
y = 80
Therefore cost of 1 notebook = x + 8.20 = 2.3 + 8.20 = $10.50
Let's check. 6 one-dollars = $6 15 five-dollars = $75 9 ten-dollars = $90 Add them all up to get $171, so that is correct. Add the number of one-dollar bills and the number of ten-dollar bills together. 6 + 9 = 15, which is the number of five-dollar bills, so that is correct as well. Add all the numbers of bills together, 6 + 9 + 15 = 15 + 15 = 30, so that is correct
The correct answer to this question is: " A valid reason why the quadrilateral shown below is a parallelogram is that "B. All pairs of consecutive angles are supplementary."
The choices are:
A. Both pairs of opposite angles are congruent
B. All pairs of consecutive angles are supplementary
C. Both pairs of opposite sides are parallel
D. All pairs of consecutive angles are complementary