1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
8

How do i find the right triangles base and height when there are alot of digits

Mathematics
2 answers:
Over [174]3 years ago
7 0
You should automatically already have the height to answer the question your being asked even if there are a lot of digits
Musya8 [376]3 years ago
3 0
<span>
</span><span>Suppose you have a triangle with sides {6,7,8} — how do you find the height?This is a question some GMAT test takers ask.  They know they would need the height to find the area, so they worry: how would I find that height.  The short answer is:fuhgeddaboudit! Which height?First of all, the “height” of a triangle is its altitude.  Any triangle has three altitudes, and therefore has three heights.  You see, any side can be a base.  From any one vertex, you can draw a line that is perpendicular to the opposite base — that’s the altitude to this base.  Any triangle has three altitudes and three bases.  You can use any one altitude-base pair to find the area of the triangle, via the formula A = (1/2)bh.
In each of those diagrams, the triangle ABC is the same. The green line is the altitude, the “height”, and the side with the red perpendicular square on it is the “base.”  All three sides of the triangle get a turn. Finding a heightGiven the lengths of three sides of a triangle, the only way one would be able to find a height and the area from the sides alone would involve trigonometry, which is well beyond the scope of the GMAT.  You are 100% NOT responsible for knowing how to perform these calculations.  This is several levels of advanced stuff beyond the math you need to know.  Don’t worry about that stuff.In practice, if the GMAT problem wants you to calculate the area of a triangle, they would have to give you the height.  The only exception would be a right triangle — in a right triangle, if one of the legs is the base, the other leg is the altitude, the height, so it’s particularly easy to find the area of right triangles. Some “more than you need to know” caveatsIf you don’t want to know anything about this topic that you don’t absolutely need for the GMAT, skip this section!a. Technically, if you know the three sides of a triangle, you could find the area from something called Heron’s formula, but that’s also more than the GMAT will expect you to know.   More than you needed to know!b. If one of the angles of the triangle is obtuse, then the altitudes to either base adjacent to this obtuse angle are outside of the triangle.  Super-technically, an altitude is not a segment through a vertex perpendicular to the opposite base, but instead, a segment through a vertex perpendicular to the line containing the opposite base.In the diagram above, in triangle DEF, one of the three altitudes is DG, which goes from vertex D to the infinite straight line that contains side EF.  That’s a technicality the GMAT will not test or expect you to know.  Again, more than you needed to know!c. If the three sides of a triangle are all nice pretty positive integers, then in all likelihood, the actual mathematical value of the altitudes will be ugly decimals.  Many GMAT prep sources and teachers in general will gloss over that, and for the purposes of easy problem-solving, give you a nice pretty positive integer for the altitude also.  For example, the real value of the altitude from C to AB in the 6-7-8 triangle at the top is:Not only are you 100% NOT expected to know how to find that number, but also most GMAT practice question writers will spare you the ugly details and just tell you, for example, altitude = 5.  That makes it very easy to calculate the area.  Yes, technically, it’s a white lie, but one that spares the poor students a bunch of ugly decimal math with which they needn’t concern themselves.  Actually, math teachers of all levels do this all the time — little white mathematical lies, to spare students details they don’t need to know.So far as I can tell, the folks who write the GMAT itself are sticklers for truth of all kinds, and do not even do this “simplify things for the student” kind of white lying.  They are more likely to circumvent the entire issue, for example, by making all the relevant lengths variables or something like that.   Yet again, more than you needed to know! What you need to knowYou need to know basic geometry.  Yes, there is tons of math beyond this, and tons more you could know about triangles and their properties, but you are not responsible for any of that.  You just need to know the basic geometry of triangles, including the formula A = (1/2)b*h.  If the triangle is not a right triangle, you have absolute no responsibility for knowing how to find the height — it will always be given if you need it.   Here’s a free practice question for you.</span>
You might be interested in
Which expressions are equivalent to the one below? Check all that apply.
Paraphin [41]

Answer:

log (1/3)

Step-by-step explanation:

log  \: 2 - log \: 6 \\  \\  = log \frac{2}{6}  \\  \\  = log \frac{1}{3}

5 0
1 year ago
A closed can, in a shape of a circular, is to contain 500cm^3 of liquid when full. The cylinder, radius r cm and height h cm, is
Gemiola [76]
To express the height as a function of the volume and the radius, we are going to use the volume formula for a cylinder: V= \pi r^2h
where
V is the volume 
r is the radius 
h is the height 

We know for our problem that the cylindrical can is to contain 500cm^3 when full, so the volume of our cylinder is 500cm^3. In other words: V=500cm^3. We also know that the radius is r cm and height is h cm, so r=rcm and h=hcm. Lets replace the values in our formula:
V= \pi r^2h
500cm^3= \pi (rcm^2)(hcm)
500cm^3=h \pi r^2cm^3
h= \frac{500cm^3}{ \pi r^2cm^3}
h= \frac{500}{ \pi r^2}

Next, we are going to use the formula for the area of a cylinder: A=2 \pi rh+2 \pi r^2
where
A is the area 
r is the radius 
h is the height

We know from our previous calculation that h= \frac{500}{ \pi r^2}, so lets replace that value in our area formula:
A=2 \pi rh+2 \pi r^2
A=2 \pi r(\frac{500}{ \pi r^2})+2 \pi r^2
A= \frac{1000}{r} +2 \pi r^2
By the commutative property of addition, we can conclude that:
A=2 \pi r^2+\frac{1000}{r}
7 0
3 years ago
The women’s world record high jump is 6 feet, 10 ¼ inches. What is the record in meters? Record your answer to the nearest hundr
valina [46]
2.08. If you want to round, then it will be 2.09.

Hope this helps! ;)
7 0
3 years ago
Solve the multiple choice for number 6
12345 [234]

Answer:

I'm pretty sure it is A

Step-by-step explanation:

5 0
2 years ago
if a cake was sold GH 200 cedis. However, there is a reduction sale of 10% on each cake if you buy 4. Amanda decides to buy 8 ca
MrMuchimi

Amanda needs to pay 1440 cedis for purchasing 8 cakes on discounted price.

<h3>What is Cost Price?</h3>

Cost price is the amount we pay to buy an item at which it is available.

Here,

Selling price of a cake = 200 cedis

Discount because of sale = 10% on each unit.

                                              (Only if 4 cakes purchased at a time)

Amanda purchased 8 cakes

So, Amanda need to pay only 90 percent of the total amount.

Total cost price of 8 cakes for Amanda = (200 X 90%) X 8

                                                                  = 180 X 8

                                                                  = 1440

Thus, Amanda needs to pay 1440 cedis for purchasing 8 cakes on discounted price.

Learn more about Cost Price from:

brainly.com/question/11027396

#SPJ1

6 0
1 year ago
Other questions:
  • Forty percent of students in a class of 35 students are the girls. How many girls are in the class?
    7·2 answers
  • 24% of 1321 is how much? round the answer to the nearest hundredth
    5·2 answers
  • Help asap neeed help
    8·1 answer
  • The ratio of North American butterflies to South American butterflies at a butterfly park is 3 :5
    5·1 answer
  • If 3 dogs eat 4 pounds of dog food a day how many dogs eat 15 pounds of food a day
    12·1 answer
  • The ratio of the side lengths of two squares is 2:5. What is the ratio of the areas of the same two squares?
    7·1 answer
  • You are dealt one card from a standard​ 52-card deck. Find the probability of being dealt a card greater than 2 and less than 5.
    14·1 answer
  • 25 POINTS!! State the minimum monthly income and hourly wage per worker needed to cover monthly expenses for the family you used
    13·1 answer
  • A smartphone costs $250. Sale tax is 6%. What is the total cost, including tax?
    11·1 answer
  • The Verrazano Narrows Bridge has a main span of 4,260 feet. The Akashi Kaikyo Bridge has a main span that is 53% longer. What is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!