<span>Commutative Property is the property in which you can move around numbers in numerical operations like, addition and multiplication while retaining their result. In contrast to subtraction and division in which position is an important factor for every result, here it is regardless. </span>Why might you want to use this property?<span>Well, most importantly it suits the operation of addition and hence, to ensure the arrangement of the number is in symmetric proportion to its counterpart such as 3 + 2=2 + 3. Or rather, understanding that the equations in both sides are but the same and equal in sum. Thus, this is much more usable or will make more sense if used in a larger scale of complex equations and integers.<span>
</span></span>
Full question:
Heng was trying to factor 10x²+5x. She found that the greatest common factor of these terms was 5x and made an area model: What is the width of Heng's area model?
Answer:
The width of the area model is 2x + 1
Step-by-step explanation:
Given
Expression: 10x² + 5x
Factor: 5x
Required
Width of the Area Model
To solve this, I'll assume the area model is Length * Width
Provided that we're to solve for the width of the model.
This implies that; Length = 5x
Area = Length * Width
And
Area = 10x² + 5x
Equate these two
Length * Width = 10x² + 5x
Factorize express on the right hand side
Length * Width = 5x(2x + 1)
Substitute 5x for Length
5x * Width = 5x(2x + 1)
Divide both sides by 5x
Width = 2x + 1
Hence, the width of the area model is 2x + 1
D. The graph of g(x) is 2 units to the right of the graph of f(x)