1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
9

Help with that for the crown if you cant see it then just zoom in i guess.

Mathematics
1 answer:
melamori03 [73]3 years ago
6 0
5 = 50
8 = 80
because:
20:2= 10 so 1 shirt will collect 10
You might be interested in
Triangle A'B'C' is the image of triangle ABC under a rotation about point Q.<br><br>​
yan [13]

9514 1404 393

Answer:

  True; about 120° CCW rotation about Q

Step-by-step explanation:

Triangle A'B'C' appears to be congruent to triangle ABC and about the same distance from point Q. The angle of rotation from ABC to A'B'C' appears to be about 120° counterclockwise when measured using a geometry program.

Triangle A'B'C' is the image of triangle ABC under rotation about 120° CCW about point Q.

_____

<em>Additional comment</em>

If choices of rotation angle are ±135° or ±165°, the best choice would be ...

  135°

3 0
2 years ago
If 180° &lt; α &lt; 270°, cos⁡ α = −817, 270° &lt; β &lt; 360°, and sin⁡ β = −45, what is cos⁡ (α + β)?
eduard

Answer:

cos(\alpha+\beta)=-\frac{84}{85}

Step-by-step explanation:

we know that

cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

Remember the identity

cos^{2} (x)+sin^2(x)=1

step 1

Find the value of sin(\alpha)

we have that

The angle alpha lie on the III Quadrant

so

The values of sine and cosine are negative

cos(\alpha)=-\frac{8}{17}

Find the value of sine

cos^{2} (\alpha)+sin^2(\alpha)=1

substitute

(-\frac{8}{17})^{2}+sin^2(\alpha)=1

sin^2(\alpha)=1-\frac{64}{289}

sin^2(\alpha)=\frac{225}{289}

sin(\alpha)=-\frac{15}{17}

step 2

Find the value of cos(\beta)

we have that

The angle beta lie on the IV Quadrant

so

The value of the cosine is positive and the value of the sine is negative

sin(\beta)=-\frac{4}{5}

Find the value of cosine

cos^{2} (\beta)+sin^2(\beta)=1

substitute

(-\frac{4}{5})^{2}+cos^2(\beta)=1

cos^2(\beta)=1-\frac{16}{25}

cos^2(\beta)=\frac{9}{25}

cos(\beta)=\frac{3}{5}

step 3

Find cos⁡ (α + β)

cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

we have

cos(\alpha)=-\frac{8}{17}

sin(\alpha)=-\frac{15}{17}

sin(\beta)=-\frac{4}{5}

cos(\beta)=\frac{3}{5}

substitute

cos(\alpha+\beta)=-\frac{8}{17}*\frac{3}{5}-(-\frac{15}{17})*(-\frac{4}{5})

cos(\alpha+\beta)=-\frac{24}{85}-\frac{60}{85}

cos(\alpha+\beta)=-\frac{84}{85}

4 0
3 years ago
What equations is equivalent to y = log x
saw5 [17]

"log" standing alone actually means "logarithm to the base 10."


Thus, y = log x   <=>   y = log      x
                                               10
                                                                           y
 Stated another way (inverse functions), x = 10
4 0
3 years ago
Cuánto dinero me gasto en colocarle baldosas a una sala comedor que tiene 9.30 de largo por 4.20 metros de ancho
Svetlanka [38]

La pregunta está incompleta ya que no se da el costo de la colocación de baldosas por m².

Suponga que el costo de los mosaicos por m² = c

Respuesta:

39.06c

Explicación paso a paso:

El costo del embaldosado será:

El costo por m² * área total a embaldosar

Dado que :

La dimensión de la habitación a embaldosar es:

Longitud = 9,30 metros

Ancho = 4.20 metros

El área total de la habitación a embaldosar es = Largo * ancho

Área total de la habitación a embaldosar = 9,30 m * 4,20 m

Superficie total de la habitación a embaldosar = 39,06 m²

Si el costo del mosaico por m² = c

El costo de embaldosar la habitación será:

39,06 * c = 39,06c

4 0
3 years ago
A cylinder and a cone have congruent heights and radii.what is the ratio of the volume of the cone to the volume of the cylinder
NemiM [27]

Answer:

1: 3 ratio of the volume of the cone to the volume of the cylinder

Step-by-step explanation:

Volume of cone(V) is given by:

V = \frac{1}{3} \pi r^2h

where, r is the radius and h is the height of the cone.

Volume of cylinder(V') is given by:

V' = \pi r'^2h'

where,  r' is the radius and h' is the height of the cylinder.

As per the statement:

A cylinder and a cone have congruent heights and radii.

⇒r = r' and h = h'

then;

\frac{V}{V'} = \frac{ \frac{1}{3} \pi r^2h}{\pi r'^2h'} = \frac{ \frac{1}{3} \pi r'^2h'}{\pi r'^2h'}

⇒\frac{V}{V'} =\frac{1}{3} = 1 : 3

Therefore, the ratio of the volume of the cone to the volume of the cylinder is, 1 : 3

4 0
3 years ago
Read 2 more answers
Other questions:
  • Convert 8 milliliters to fluid ounces use 1 mL =0.034
    10·1 answer
  • A line passes through the point (4,-2) and has a slope of 1/2
    14·2 answers
  • Hey guys, i have a really big problem with solving these types of questions. Could you tell me how to solve this? Brainliest!
    5·1 answer
  • What is the exact volume of the cone​
    10·1 answer
  • The system shown has _____ solution(s).
    8·2 answers
  • Please help desperate please due today
    8·1 answer
  • If an oatmeal serving consists of three-quarters of a cup, and there are four servings in a box, how many cups are there in one
    10·1 answer
  • -9(5-2)-111÷3 show all work ​
    13·2 answers
  • NEED HELP ASAP LOL, I MARK BRAINLIEST, NO GIBBERISH PLZ
    6·1 answer
  • Help 6th grade math i will give brainliest
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!