9514 1404 393
Answer:
True; about 120° CCW rotation about Q
Step-by-step explanation:
Triangle A'B'C' appears to be congruent to triangle ABC and about the same distance from point Q. The angle of rotation from ABC to A'B'C' appears to be about 120° counterclockwise when measured using a geometry program.
Triangle A'B'C' is the image of triangle ABC under rotation about 120° CCW about point Q.
_____
<em>Additional comment</em>
If choices of rotation angle are ±135° or ±165°, the best choice would be ...
135°
Answer:

Step-by-step explanation:
we know that

Remember the identity

step 1
Find the value of 
we have that
The angle alpha lie on the III Quadrant
so
The values of sine and cosine are negative

Find the value of sine

substitute




step 2
Find the value of 
we have that
The angle beta lie on the IV Quadrant
so
The value of the cosine is positive and the value of the sine is negative

Find the value of cosine

substitute




step 3
Find cos (α + β)

we have




substitute



"log" standing alone actually means "logarithm to the base 10."
Thus, y = log x <=> y = log x
10
y
Stated another way (inverse functions), x = 10
La pregunta está incompleta ya que no se da el costo de la colocación de baldosas por m².
Suponga que el costo de los mosaicos por m² = c
Respuesta:
39.06c
Explicación paso a paso:
El costo del embaldosado será:
El costo por m² * área total a embaldosar
Dado que :
La dimensión de la habitación a embaldosar es:
Longitud = 9,30 metros
Ancho = 4.20 metros
El área total de la habitación a embaldosar es = Largo * ancho
Área total de la habitación a embaldosar = 9,30 m * 4,20 m
Superficie total de la habitación a embaldosar = 39,06 m²
Si el costo del mosaico por m² = c
El costo de embaldosar la habitación será:
39,06 * c = 39,06c
Answer:
1: 3 ratio of the volume of the cone to the volume of the cylinder
Step-by-step explanation:
Volume of cone(V) is given by:

where, r is the radius and h is the height of the cone.
Volume of cylinder(V') is given by:

where, r' is the radius and h' is the height of the cylinder.
As per the statement:
A cylinder and a cone have congruent heights and radii.
⇒r = r' and h = h'
then;

⇒
Therefore, the ratio of the volume of the cone to the volume of the cylinder is, 1 : 3