Step-by-step explanation:
thats is all,just subject of formula
Answer:
The probability is 0.9211
Step-by-step explanation:
Let's call K the event that the student know the answer, G the event that the student guess the answer and C the event that the answer is correct.
So, the probability P(K/C) that a student knows the answer to a question, given that she answered it correctly is:
P(K/C)=P(K∩C)/P(C)
Where P(C) = P(K∩C) + P(G∩C)
Then, the probability P(K∩C) that the student know the answer and it is correct is:
P(K∩C) = 0.7
On the other hand, the probability P(G∩C) that the student guess the answer and it is correct is:
P(G∩C) = 0.3*0.2 = 0.06
Because, 0.3 is the probability that the student guess the answer and 0.2 is the probability that the answer is correct given that the student guess the answer.
Therefore, The probability P(C) that the answer is correct is:
P(C) = 0.7 + 0.06 = 0.76
Finally, P(K/C) is:
P(K/C) = 0.7/0.76 = 0.9211
Answer:
78.26
Step-by-step explanation:
130+50= 180
.45-.15+2=2.3
180/2.3=78.26
For this case we propose a system of equations. We have to:
x: Let the variable that represents the number of dimes
y: Let the variable that represents the number of quaters
We know that:
One dime equals 10 cents, $0.10
A quater equals 0.25 cents, $0.25
According to the statement we have:

We multiply the first equation by -0.10:

We have the following equivalent system:

We add the equations:

Approximately 3 quater coins

And two dimes
Answer:
3 quater
2 dimes
Answer:B
Step-by-step explanation: