We have
M(X) = (X + 5)/(X - 1)
N(X) = X - 3
So,
M(N(X)) = [(X - 3) + 5]/[(X - 3) - 1]
<h3>M(N(X)) = [X + 2]/[X - 4]</h3>
The M(N(X)) domain will be:
D = {X / X ≠ 4}
4 ∉ to the M(N(X)) domain, otherwise we would have a/0, which is not possible (a denominator with zero). An equivalent function would be
H(X) = 1/(X - 4)
Hello!
log₃(x) + log₃(x - 6) = log₃(7) <=>
<=> log₃(x * (x - 6)) = log₃(7) <=>
<=> log₃(x² - 6x) = log₃(7) <=>
<=> x² - 6x = 7 <=>
<=> x² - 6x - 7 = 0 <=>
<=> x² + x - 7x - 7 = 0 <=>
<=> x * (x + 1) - 7 * (x + 1) = 0 <=>
<=> (x + 1) * (x - 7) = 0 <=>
<=> x + 1 = 0 and x - 7 = 0 <=>
<=> x = -1 and x = 7, x ∈ { 6; +∞ } <=>
<=> x = 7
Good luck! :)
Yes the answer is correct
Answer:
Step-by-step explanation:
a) x>0 → items can not be negative
b) c(2,000) = 5,000+1.3(2,000) = $7,600
c)5,000+1.3x<10,000
5,000-5,000+1.3x<10,000-5,000
1.3x<5,000
x<3846 items
How are we supposed to help with this what the heck??