Answer:
(fx^2)/3 - 6f
Step-by-step explanation:
Answer:
Wyzant
Question
Flying against the wind, an airplane travels 4200 km in 7 hours. Flying with the wind, the same plane travels 4000 km in 4 hours. What is the rate of the plane in still air and what is the rate of the wind?
Answer · 1 vote
Let Va = the velocity of the airplane Let Vw = the velocity of the wind When flying with the wind: (Va+Vw)*(4 hours) = 4000 4Va + 4Vw = 4000 4Vw = 4000 - 4Va Vw = 1000 - Va When flying against the wind: (Va-Vw)*(7 hours) = 4200 km7Va - 7Vw = 4200 Substitute 1000-Va for Vw and solve for Va: 7Va - 7(1000-Va) = 4200 7Va -7000 + 7Va = 4200 14Va = 11200 Va = 800 km/hr Rate of wind: Vw = 1000 - Va = 1000 - 800 = 200 km/hour
More
Socratic
Question
Flying against the wind, an airplane travels 4500 in 5 hours. Flying with the wind, the same plane travels 4640 in 4 hours. What is the rate of the plane in still air and what is the rate of the wind?
Answer · 0 votes
The speed of plane in still air is 1030 km/hr and wind
Step-by-step explanation:
Answer:1.69*10^12 J
Step-by-step explanation:
From figure above, using triangle ratio
485/755.5=y/l. Cross multiplying 485l=755.5y Divide via 485) hence l= 755.5y/485
Consider a slice volume Vslice= (755.5y/485)^2∆y; recall density =150lb/ft^3
Force slice = 150*755.5^2.y^2.∆y/485^2
From figure 2 in the attachment work done for elementary sclice
Wslice= 150.755.5^2.y^2.∆y.(485-y)/485^2
= (150*755.5^2*y^2)(485-y)∆y/485
To calculate the total work we integrate from y=0 to y= 485
Ie W=[ integral of 150*755.5^2 *y^2(485-y)dy/485] at y=0 and y= 485
Integrating the above
W= 150*755.5^2/485[485*y^3/3-y^4/4] at y= 0 and y=485
W= 150*755.5^2/485(485*485^3/3-484^4/4)-(485.0^3/3-0^4/4)
Work done 1.69*10^12joules
Answer:
Using the estimate:
The car has to go for 1,200 miles but it consumes a gallon of gasoline for every 30 miles. The number of gallons it will need is therefore:
= 1,200 / 30
= 40 gallons
Each gallon costs $3.00 so the total cost is:
= 40 * 3
= $120
Without using the estimate:
The car has to go for 1,211 miles but it consumes a gallon of gasoline for every 29 miles. The number of gallons it will need is therefore:
= 1,211 / 29
= 41.76 gallons
Each gallon costs $3.40 so the total cost is:
= 41.76 * 3.40
= $141.98
<em>Using the estimate provides a lower cost of gasoline for the trip. </em>
Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation:
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or, (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or, (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 209.33 yards
or, (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.