Answer, step-by-step explanation:
A. With the previous exercise we can deduce that there is the situation of a number of sales in a grocery store, the relative frequency for the number of units sold, is shown below:
units sold. relative frequency. Acumulative frequency. interval of random numbers
30. 0.16. 0.16. 0.00 <0.16
40. 0.24. 0.4. 0.16 <0.4
50. 0.3. 0.7. 0.4 <0.7
60. 0.2. 0.9. 0.7<09
70. 0.1. 1. 0.9<1
B. For the next point, they give us some random numbers and then it is compared with the simulation of 10 days in sales:
random Units
number. sold
0.12. 30
0.96. 70
0.53. 50
0.80. 60
0.95. 70
0.10. 30
0.40. 50
0.45. 50
0.77. 60
0.29. 40
the two lists are compared so that opposite each one is the result of the simulation
Answer:
z
Step-by-step explanation:
the same time as the first time since
Intercept form is: y = a(x - p)(x - q)
It is given that: p = 14, q = -6, x = 14, y = 4
4 = a(14 - 12)(14 - (-6))
4 = a(2)(20)
4 = 40a


Answer: y =
(x - 14)(x + 6)
We have:

and:

so:


It is a finite sum, so it is convergent.
Answer: The value of k for which one root of the quadratic equation kx2 - 14x + 8 = 0 is six times the other is k = 3.
Let's look into the solution step by step.
Explanation:
Given: A quadratic equation, kx2 - 14x + 8 = 0
Let the two zeros of the equation be α and β.
According to the given question, if one of the roots is α the other root will be 6α.
Thus, β = 6α
Hence, the two zeros are α and 6α.
We know that for a given quadratic equation ax2 + bx + c = 0
The sum of the zeros is expressed as,
α + β = - b / a
The product of the zeros is expressed as,
αβ = c / a
For the given quadratic equation kx2 - 14x + 8 = 0,
a = k, b = -14, c = 8
The sum of the zeros is:
α + 6α = 14 / k [Since the two zeros are α and 6α]
⇒ 7α = 14 / k
⇒ α = 2 / k --------------- (1)
The product of the zeros is:
⇒ α × 6α = 8 / k [Since the two zeros are α and 6α]
⇒ 6α 2 = 8 / k
⇒ 6 (2 / k)2 = 8 / k [From (1)]
⇒ 6 × (4 / k) = 8
⇒ k = 24 / 8
⇒ k = 3