Answer:
isolate genes from eukaryotic cell nuclei C.
Explanation:
A DNA microarray (also commonly known as DNA chip or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome
In an mRNA or gene expression profiling experiment the expression levels of thousands of genes are simultaneously monitored to study the effects of certain treatments, diseases, and developmental stages on gene expression. For example, microarray-based gene expression profiling can be used to identify genes whose expression is changed in response to pathogens or other organisms by comparing gene expression in infected to that in uninfected cells or tissues.
Answer:
The correct answer is D) assimilation of external DNA into a cell
Explanation:
A bacteria is called transformed when it consist a genetic material that is not it's own but taken from outside the cell. So transformation of bacterial cell defines the uptake of foreign DNA by bacterial cell from its surrounding.
This transformation in bacteria is necessary because it provides bacteria some new and extra genes that help it to survive in the adverse and changing environment.
Transformation can result in getting the antibiotic-resistant gene to the bacteria which protect the bacteria from antibiotics during infection when antibiotic is used against it.
So the right answer is D) assimilation of external DNA into a cell.
It depends.... lets say that a mom is a carrier of colorblindness, so only one of her sons will have colorblindness and one of her daughters will be a carrier but if it is on both X's (of the female's) then both of her daughters will be carriers and her sons will both be colorblind.
Pituitary dwarfism is caused by problems arising from the pituitary gland. The pituitary gland, also called the hypophysis, is a gland at the base of the brain that produces many different hormones. This gland is divided into the anterior (front) and posterior (back) halves. The anterior pituitary produces six hormones: growth hormone, adrenocorticotropin (corticotropin), thyroid stimulating hormone (thyrotropin), prolactin, follicle stimulating hormone, and lutenizing hormone. The posterior pituitary gland only produces two hormones: antidiuretic hormone (vasopressin) and oxytocin.
The growth process begins in the lower part of the forebrain in a small organ called the hypothalamus. The hypothalamus releases hormones that regulate the production of other hormones. When the hypothalamus releases growth hormone-releasing hormone (GHRH), the anterior pituitary is stimulated to release growth hormone (GH). Growth hormone then acts on the liver and other tissues and stimulates them to secrete insulin-like growth factor-1 (IGF-1). IGF-1 directly promotes the development of bone and muscle, causing bones to grow in length, and muscles to increase protein synthesis (make more protein).
Since growth is a complex phenomenon, it may be slowed down or stopped by abnormalities arising at any point in the process. Thus, dwarfism can result if there is a deficiency in any of these hormones, if there is a failure in the receptor cells receiving the hormonal stimuli, or if the target cells are unable to respond.
At its most basic, pituitary dwarfism results from decreased production of hormones by the anterior pituitary. When none of the hormones of the anterior pituitary are adequately produced, this is called panhypopituitarism. A common form of pituitary dwarfism is due to deficiencies in the production of growth hormone (GH). When less GH than normal is produced during childhood, an individual's arms, legs, and other structures continue to develop in normal proportions, but at a decreased rate.
<span>
hopre i helped</span>