1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
3 years ago
14

Someone help me please I don’t know how to do this

Mathematics
1 answer:
baherus [9]3 years ago
4 0

Step-by-step explanation:

A

y=10x

x:y=x:10x=1:10

You might be interested in
LaTricia wrote a sentence as an equation.
Serhud [2]

Twelve is the product of three and a number.

Product: an answer given due to multiplication.

Since Twelve is described as the product of three and a number, it is our answer.

?? = 12

Twelve is the product of three and a number. since it is a product, that means their was multiplication involved. using the clues "Three and a number", we can deduce that these are multiplied to get our product, which is twelve.

if it says number, then that represents the unknown variable of the equation. this is usually defined as X or any other letter(s) if their is more than one variable or if it is specified.

3X = 12

6 0
4 years ago
Read 2 more answers
1 1/4 +(3 2/3 +5 3/4)​
andrew11 [14]
10 2/3. if you need it in fraction form it's 32/3, and if you need it in decimal form it's 10.6.
3 0
4 years ago
Read 2 more answers
How to solve it&&&&&&&&&&&
Dimas [21]

Answer:

y = 4 and x = 12

Step-by-step explanation:

Step by step explanation in the pic. Atleast the way I did it.

8 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
I'm not sure what this means, please help me I'll give you 10 points ;)
Karo-lina-s [1.5K]

<u>Answer:</u>

So all the possible solutions are:

  • \bold{523,~400,~379~and,~378.6}

<u />

<u>Solution Steps:</u>

<em>First you need to solve the real inequality to understand how to find the rest of the possible equations. </em>

<u>Add 78 to both sides:</u>

  • <u />78+78= Cancels Out
  • 300+78=378

<em>So now we know the real answer, but it ask for all possible answers. </em>

(Means anything larger than 300 when you plug it into x - 78 > 300.)

<u>Numbers that are greater than 378:</u>

  1.)  377-78=299 > 300  (False)

  2.)  523-78=445>300  (True)

  3.)  0-78=-78>300  (False)

  4.)  -62-78=-140>300  (False)

  5.)  400-78=322>300  (True)

  6.)  379-78=301>300  (True)

  7.)  222-78=144>300  (False)

  8.)  378.6-78=300.6>300 (True)

______________________________

 \bold{Hope~this~helps!}\\\bold{If~you~need~help~with~anything~else,~feel~free~to~ask!}\\\\\bold{~~~~~-TotallyNotTrillex}

5 0
3 years ago
Other questions:
  • The radius of the larger circle is 10 cm. The radius of the smaller circle is 5 cm. What is the approximate area of the shaded r
    12·2 answers
  • Solve 12g=12(2/3g-1)+11
    8·2 answers
  • The length of a rectangle is 12 inches longer than its width. If the area of the rectangle is 160 square inches,
    5·1 answer
  • Through: (4,-1), perpendicular to y=x+2
    15·1 answer
  • Find the slope of the following graph <br> • -8 <br> • -1/8<br> • 1/8
    14·2 answers
  • For any set of n measurements, the fraction included in the interval y − ks to y + ks is at least 1 − 1 k2 . This result is know
    14·1 answer
  • Solve the system using subtraction. 7x + 2y = 13 –x + 2y = –11 What is the solution of the system?
    13·2 answers
  • A parachutist's rate during a free fall reaches 90 miles per hour. What is this rate in feet per second? At this rate, how many
    13·1 answer
  • 8. Divide 63.924 g by 20 g.​
    15·1 answer
  • What is the surface area of the figure? 408ft^2 458ft^2 545ft^2 720ft^2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!