<span>Un cubo tiene seis caras.
</span>Las dos imágenes ayudan a explicar. Uno de los cubos es un cubo transparente.<span> Por otro cubo es cubo hueco que se ha desplegado.</span> E<span>spero que esto ayude</span>
Answer:
<h2>x = 5</h2>
Step-by-step explanation:

The numbers in this problem are ordered pairs, which are points on a graph.
These are (10, 20), (-10, 20), (-10, -10), and (10, -10).
To find the area and perimeter of this shape, you must first find the distance between each point.
Distance between (10, 20) and (-10, 20):
Since the y-value remains the same here, we just have to find the difference in x-values.
This means 10 - (-10)
A negative being subtracted is the same as a positive being added.
That means 10 - (-10) is the same as 10 + 10.
10 + 10 = 20, so the distance between (10, 20) and (-10, 20) is 20 units.
Distance between (-10, 20) and (-10, -10):
The x-values are the same here so just find the difference between the y-values.
20 - (-10) = 20 + 10 = 30
The distance between the (-10, 20) and (-10, -10) is 30 units.
Distance between (-10, -10) and (10, -10):
The y-values are the same so just find the difference between the x-values.
10 - (-10) = 10 + 10 = 20
The distance between (-10, -10) and (10, -10) is 20 units.
Distance between (10, -10) and (10, 20):
The x-values are the same so find the difference between the y-values.
20 - (-10) = 20 + 10 = 30
The distance between (10, -10) and (10, 20) is 30 units.
So now we know the side lengths of the room are 20 units, 30 units, 20 units, and 30 units.
To find the perimeter, add all the side lengths together.
20 + 30 + 20 + 30 = 100
The perimeter of the room is 100 units.
To find the area, multiply the length by the width.
The length is 20 units and the width is 30 units.
20 • 30 = 600
The area of the room is 600 units.
Final answers:
Perimeter = 100
Area = 600
Hope this helps!
Answer:
just practice time and again practice might not make perfect but it surely makes better. relying when your teacher only might not help you must mostly rely on your hard work and also have people at your disposal to help you including the said teacher hope you'll improve
Answer:
The 95% confidence interval for the average number of years until the first major repair is (3.1, 3.5).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for the average using the finite correction factor is:

The information provided is:

The critical value of <em>z</em> for 95% confidence level is,
<em>z</em> = 1.96
Compute the 95% confidence interval for the average number of years until the first major repair as follows:


Thus, the 95% confidence interval for the average number of years until the first major repair is (3.1, 3.5).