Answer:
m∠J = 45° , m∠I = 45° and m∠M = 90°
And the ΔJIM is an isosceles right angled triangle.
Step-by-step explanation:
(a). In ΔJIM,
∠J = 2x + 15,
∠I = 5x - 30, and
∠M = 6x
Now, using angle sum property of a triangle that sum of all the angles in a triangle is 180°
⇒ ∠J + ∠I + ∠M = 180°
⇒ 2x + 15 + 5x - 30 + 6x = 180°
⇒ 13x -15 = 180°
⇒ 13x = 195
⇒ x = 15
Therefore, m∠J = 45° , ∠I = 45° and m ∠M = 90°
(b). Now, ΔJIM is a right angled triangle right angled at M.
Also, ∠J = ∠I = 45°
So, JM = IM ( because in a triangle sides opposite to equal angles are equal)
So, ΔJIM is an isosceles triangle because its two sides are equal.
Hence, ΔJIM is a right angled isosceles triangle right angled at M.
Attached solutions and work.
Answer:
3.
Step-by-step explanation:
The scale factor is basically what figure B is divided by.
9 / 3 = 3
3.6 / 3 = 1.2
Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle. This can be obtained by finding each shaded area and then adding them.
<h3>Find the expression for the area of the shaded regions:</h3>
From the question we can say that the Hexagon has three shapes inside it,
Also it is given that,
An equilateral triangle is shown inside a square inside a regular pentagon inside a regular hexagon.
From this we know that equilateral triangle is the smallest, then square, then regular pentagon and then a regular hexagon.
A pentagon is shown inside a regular hexagon.
- Area of first shaded region = Area of the hexagon - Area of pentagon
An equilateral triangle is shown inside a square.
- Area of second shaded region = Area of the square - Area of equilateral triangle
The expression for total shaded region would be written as,
Shaded area = Area of first shaded region + Area of second shaded region
Hence,
⇒ Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle.
Learn more about area of a shape here:
brainly.com/question/16501078
#SPJ1
Answer:
13421+402
Step-by-step explanation: