Answer:
A. They will pay more with the new price plan.
B. The new price plan would be cheaper.
Step-by-step explanation:
A. They will pay more with the new price plan.
For the current price plan, you would add the $3 rent to the two games (which are $4 each). This basically means:
$3 + $4 + $4 = $11
For the new price plan, you would add the $11 rent to the two games (which are $2 each). This basically means:
$11 + $2 + $2 = $15
Therefore, you pay more for the new price plan.
B. Using similar logic as part A, the current price plan 7 games would cost:
$3 + [7 x ($4)] = $31 (multiply by 7 since they play 7 games)
For the newprice plan, 7 games would cost:
$11 + [7 x ($2)] = $25 (multiply by 7 since they play 7 games)
Therefore, the new price plan would be cheaper.
Hope this helps :)
Hello,
Answer C if x≠0
(x^5-x^4+x²)/(-x²)=-x²(x^3-x²+1)/x²=-(x^3-x²+1)=-x^3+x²-1
Answer:
Given data, first determine which is the independent variable, x, and which is the dependent variable, y. Enter the data pairs into the regression calculator. Substitute the value for one variable into the equation for the regression line produced by the calculator, and then predict the value of the other variable.
Step-by-step explanation:
- Enter data into the regression calculator.
- Determine the regression equation.
- Substitute the correct value for x or y into the equation.
- Simplify to find the value of the other variable.
Answer:
B and C
Step-by-step explanation:
Just not linear lol
The probability that the mean clock life would differ from the population mean by greater than 12.5 years is 98.30%.
Given mean of 14 years, variance of 25 and sample size is 50.
We have to calculate the probability that the mean clock life would differ from the population mean by greater than 1.5 years.
μ=14,
σ=
=5
n=50
s orσ =5/
=0.7071.
This is 1 subtracted by the p value of z when X=12.5.
So,
z=X-μ/σ
=12.5-14/0.7071
=-2.12
P value=0.0170
1-0.0170=0.9830
=98.30%
Hence the probability that the mean clock life would differ from the population mean by greater than 1.5 years is 98.30%.
Learn more about probability at brainly.com/question/24756209
#SPJ4
There is a mistake in question and correct question is as under:
What is the probability that the mean clock life would differ from the population mean by greater than 12.5 years?