Answer:
0.3333 = 33.33% probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
Step-by-step explanation:
A distribution is called uniform if each outcome has the same probability of happening.
The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

A particular employee arrives at work sometime between 8:00 a.m. and 8:30 a.m.
We can consider 8 am = 0, and 8:30 am = 30, so 
Find the probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
Between 15 and 25, so:

0.3333 = 33.33% probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
The domain is -3, -1, 0, 1, 5
This problem asks, as simply put, the value of the function at x=3. So, plug in three to find your answer:
2(3) + 1 = 7, so g(3) is 7
Answer:
I have exams too well cba's
Step-by-step explanation: