Can you get a full picture? Part of it is missing.
First we take the number as it is. Second, we look at the last number. 6 is rounds up to ten which rounds the 3 up to a 4. So now we come up with 8.4, but that isn't a whole number. We can then round 4 to 0 because it's closer to 0 on a number line. Now, our answer is 8.0, but, in order to have a whole number, we can't have any decimals. we can, then, take away the 0 and the decimal, which leaves us 8, and 8 is a whole number; we can now say the answer is 8. :)
Answer:
C = pi * 37m
Step-by-step explanation:
Diameter = 2(18.5m) = 37m
Answer:
x = - 2.5
Step-by-step explanation:
Given that the sketch represents
y = x² + bx + c
The graph crosses the y- axis at (0 , - 14), thus c = - 14
y = x² + bx - 14
Given the graph crosses the x- axis at (2, 0), then
0 = 2² + 2b - 14
0 = 4 + 2b - 14 = 2b - 10 ( add 10 to both sides )
10 = 2b ( divide both sides by 2 )
b = 5
y = x² + 5x - 14 ← represents the graph
let y = 0 , then
x² + 5x - 14 = 0 ← in standard form
(x + 7)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 7 = 0 ⇒ x = - 7
x - 2 = 0 ⇒ x = 2
The x- intercepts are x = - 7 and x = 2
The vertex lies on the axis of symmetry which is midway between the x- intercepts, thus
the x- coordinate of the turning point is
=
= - 2.5
Let

Differentiating twice gives


When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.
Substitute these into the given differential equation:


Then the coefficients in the power series solution are governed by the recurrence relation,

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.
• If n is even, then n = 2k for some integer k ≥ 0. Then




It should be easy enough to see that

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then




so that

So, the overall series solution is

