1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
8

Is this a real person ​

Mathematics
2 answers:
nlexa [21]3 years ago
8 0

Answer:

yes......

d synch office

yes it is...

Leto [7]3 years ago
3 0

Answer:

who

Step-by-step explanation:

You might be interested in
Help pls and ty :D !!​
xxMikexx [17]

Try this suggested option, answers are marked with colour.

4 0
2 years ago
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
If x=-1, x^5+x+4+x^3+x
DedPeter [7]

Answer:

0

Step-by-step explanation:

yeah-ya.............. right?

8 0
2 years ago
Read 2 more answers
Quadrilaterals-what are all other names for quadrilateral parallelograms
iren2701 [21]
Square
Rectangle
Rhombus
Trapezoid
Kite
They all have a four sides
5 0
3 years ago
Mr.Hollins determines that he gives 800 dollers each month if he gives away 16percent of his budget how much is his overall budg
kirill115 [55]
800 x 100 = 80000

80000 divided by 16 = 5000

5000 - 800 = 4200

His overall budget is $4200
8 0
3 years ago
Other questions:
  • Bernadette bought two piece of ribbon .one piece is 6 1/4 feet long,and the other is 11 1/2 feet long.find the total length of t
    15·2 answers
  • Geometry question 2, Thanks if you help!
    12·2 answers
  • Harold invested $30,000 in various stocks
    6·1 answer
  • Using the slope formula find the slope of the line through the given points. (-5,-11) (-3,-4)
    5·1 answer
  • Calculate the slope of the line that passes through the points (1, −3) and (3, −5).
    13·1 answer
  • I need 5 lines with a undefined slope
    10·1 answer
  • (4, -2), y = –2x + 3<br><br> PLS HELP HOW DO I DO THIS?
    11·1 answer
  • Has to be turned in soon at 9:00 it's 7:50
    5·1 answer
  • What's a real number?
    8·2 answers
  • A small class has 10 students, 4 of whom are girls and 6 of whom are boys. The teacher is going to choose two of the students at
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!