Answer:
Midpoint (-2,4)
distance nearest tenth = 8.9
The approximate distance = 9
Step-by-step explanation:
Formulas
PQ midpoint = (x2 + x1)/2, (y2 + y1)/2
distance d = sqrt( (x2 - x1)^2 + (y2 - y1)^2 )
Givens
x2 = -4
x1 = 0
y2 = 1
y1 = 7
Solution
M(PQ) = (-4+0)/2, (1 + 7)/2
M(PQ) = -2, 4
The midpoint is -2,4
The distance = sqrt( (4 - 0)^2 + (1 + 7)^2 )
The distance = sqrt(16 + 64)
The distance = sqrt(80)
The distance = 4√5 exactly
The distance = 8.94
The distance = 8.9 To the nearest tenth
Question 2
The distance is rounded to the nearest whole number which is 9.
Answer:
The function for the outside temperature is represented by
, where t is measured in hours.
Step-by-step explanation:
Since outside temperature can be modelled as a sinusoidal function, the period is of 24 hours and amplitude of temperature and average temperature are, respectively:
Amplitude


Mean temperature


Given that average temperature occurs six hours after the lowest temperature is registered. The temperature function is expressed as:
![T(t) = \bar T + A \cdot \sin \left[2\pi\cdot\frac{t-6\,h}{\tau} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%20%5Cbar%20T%20%2B%20A%20%5Ccdot%20%5Csin%20%5Cleft%5B2%5Cpi%5Ccdot%5Cfrac%7Bt-6%5C%2Ch%7D%7B%5Ctau%7D%20%5Cright%5D)
Where:
- Mean temperature, measured in degrees.
- Amplitude, measured in degrees.
- Daily period, measured in hours.
- Time, measured in hours. (where t = 0 corresponds with 5 AM).
If
,
and
, the resulting function for the outside temperature is:
![T(t) = 85\º + 15\º \cdot \sin \left[\frac{t-6\,h}{24\,h} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%2085%5C%C2%BA%20%2B%2015%5C%C2%BA%20%5Ccdot%20%5Csin%20%5Cleft%5B%5Cfrac%7Bt-6%5C%2Ch%7D%7B24%5C%2Ch%7D%20%5Cright%5D)
Answer:P
Step-by-step explanation:
it is
Answer:
A rhombus has two pairs of parallel sides.
Step-by-step explanation:
Answer:
1/10
Step-by-step explanation:
10/100= 10%