The additive inverse of a number is that number with its sign changed.
The additive inverse of 5/8 is -5/8, so that is the value of <em>m</em>.
The sum of a number and its additive inverse is <em>zero</em>. (This is actually the definition of <em>additive inverse</em>.)
5/8 is found at 5/8 on the number line.
m is found at -5/8 on the number line.
"sum" is found at 0 on the number line.
Answer:
3 1/5 minutes per meter
Step-by-step explanation:
To find the rate in minutes per meter, divide the number of minutes by the number of meters:
(2.4 min)/(0.75 m) = 3.2 min/m = 3 1/5 minutes per meter
Answer:
Yes it's A. 0.79
Step-by-step explanation:
You plug in 6.5 into the y-value since it asks to find the ratio,x, if the pHis 6.5. Then you can solve using a calculator to get 0.79432, or 0.79
Recuerda que
• |<em>x</em>| = <em>x</em> si <em>x</em> ≥ 0
• |<em>x</em>| = -<em>x</em> si <em>x</em> < 0
Necesitas considerar dos casos:
• si <em>x</em> - 3 ≥ 0,
|<em>x</em> - 3| < 1 ⇒ <em>x</em> - 3 < 1 ⇒ <em>x</em> < 4
• si <em>x</em> - 3 < 0,
|<em>x</em> - 3| < 1 ⇒ -(<em>x</em> - 3) = 3 - <em>x</em> < 1 ⇒ -<em>x</em> < -2 ⇒ <em>x</em> > 2
Entonces la solución consta de todos los números reales <em>x</em> tales que <em>x</em> > 2 y <em>x</em> < 4, o simplemente 2 < <em>x</em> < 4.
El método para resolver las otras desigualdades es el mismo.
|4<em>x</em> + 1| > 0 ⇒ 4<em>x</em> + 1 > 0 o -(4<em>x</em> + 1) > 0
… ⇒ 4<em>x</em> + 1 > 0 o -4<em>x</em> - 1 > 0
… ⇒ 4<em>x</em> > -1 o -4<em>x</em> > 1
… ⇒ <em>x</em> > -1/4 o <em>x</em> < -1/4
⇒ <em>x</em> ≠ -1/4
|<em>x</em> - 1| < 5 ⇒ <em>x</em> - 1 < 5 o -(<em>x</em> - 1) < 5
… ⇒ <em>x</em> - 1 < 5 o -<em>x</em> + 1 < 5
… ⇒ <em>x</em> < 6 o -<em>x</em> < 4
… ⇒ <em>x</em> < 6 o <em>x</em> > -4
⇒ -4 < <em>x</em> < 6
The radicand of a quadratic is b^2-4ac.
If it is greater than zero, there are two real solutions
If it is equal to zero, there is one real solution
If it is less than zero, there are no real solutions (though there are two imaginary solutions)
In this case the discriminant is 256-2160 so it is less than zero.
Therefore there are no real solutions, though there are two imaginary solutions, specifically (16±i√-1904)/18