Answer:
Step-by-step explanation:
Answer:
90% confidence interval for the true mean weight of orders is between a lower limit of 103.8645 grams and an upper limit of 116.1355 grams.
Step-by-step explanation:
Confidence interval for true mean weight is given as sample mean +/- margin of error (E)
sample mean = 110 g
sample sd = 14 g
n = 16
degree of freedom = n - 1 = 16 - 1 = 15
confidence level = 90% = 0.9
significance level = 1 - C = 1 - 0.9 = 0.1 = 10%
critical value (t) corresponding to 15 degrees of freedom and 10% significance level is 1.753
E = t × sample sd/√n = 1.753×14/√16 = 6.1355 g
Lower limit of sample mean = sample mean - E = 110 - 6.1355 = 103.8645 g
Upper limit of sample mean = sample mean + E = 110 + 6.1355 = 116.1355 g
90% confidence interval is (103.8645, 116.1355)
The answer is 11/36
2/12 chance of rolling fours
because there are 2 sides containing a four on both dice combined and 12 sides in total.
Doubles mean you have to roll the same number simultaneously so let’s say we want to calculate the probability for double ones: then it’s 1/6 on the first dice for a one, and 1/6 on the second dice to land on a one as well.
I personally like to imagine a box like this:
_ _ _ _ _ _
|
|
|
|
|
|
If you have one dice then it’s just a random segment on one of the lines. If you want the specific result from two dice then you want two specific segments which is also the 1 specific tile out of 36 (6 width times 6 height). So you multiply.
1/6 * 1/6 = 1/36 chance to roll double of ones
And 1/36 chance to roll double twos, threes, fours, fives, and sixes. But we don’t count the double fours because any four will do. So:
1/36 * 5 = 5/36
So for the probability of either doubles or containing a four is the probability of doubles of either number plus the probability of either dice being a four:
5/36 + 2/12 =
5/36 + 6/36 =
11/36
Answer:
m-(nx)
Step-by-step explanation:
He starts with <em>m</em> dollars, and every day spends <em>n</em> so you would multiply <em>n</em> and <em>x</em> to figure out how much he spent over how many days.