1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
6

Hey everyone

Mathematics
1 answer:
Basile [38]3 years ago
5 0

Answer:

She will dive 30 meters below sea level

Step-by-step explanation:

0 is the sea level, so that means 0-30 meaning she will go 30 meters below sea level.

You might be interested in
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
What is the slope of the line that passes through (3, 11) and (10, 15)?
antiseptic1488 [7]

Answer:

4/7

Step-by-step explanation:

\frac{y2-y1}{x2-x1} \\\frac{15-11}{10-3} \\\frac{4}{7}

5 0
3 years ago
If a student drinks 64 ounces of coffee each day, how many gallons do they drink per year? Round to the nearest tenth. Please he
Tanya [424]

The student drinks 182.5 gallons a year. Work: 64 x 365 = 23360/128 = 182.50 gallons

7 0
4 years ago
Consider the absolute vale function f(x)=-|x+2|-2<br>the vertex of the function is
Ilya [14]
The vertex of the absolute value function f(x) = |x| is (0,0).
What about <span>f(x)=-|x+2|-2?  This can be re-written as f(x) = -|x-(-2)| -2.
Three things happen here:  first, the graph of f(x) = |x| must be inverted, so that it opens down instead of up; second, the resulting graph must be translated 2 units to the left; and third, the resulting graph must be translated 2 units down.
 </span>
4 0
4 years ago
Read 2 more answers
Audrey makes a certain shade of blue paint. She uses 3 1/2 quarts of blue paint with 5 quarts of white paint. Her cousin Evan wi
Lesechka [4]

Answer:

b = 0.7w

Step-by-step explanation:

To make a shade of blue paint :

3 1/2 quarts of blue

5 quarts of white

3 1/2 α 5

7/2 = 5k

Where k is the proportionality constant

k = 7/2 ÷ 5

k = 7/2 * 1/5

k = 7/10

k = 0.7

To mix :

b quartz of blue with w quartz of white

b = kw

b = 0.7w

3 0
3 years ago
Other questions:
  • Nick is undertaking an expedition across the desert from A to B. In order to complete his journey he starts at A, walks 7km West
    15·1 answer
  • Select the correct answer.
    11·2 answers
  • Approaching deadline help is highly appreciated thanks in advance
    12·1 answer
  • A train can either be early, on time or late the probability that the train is early is 0.2 the probability that the train is on
    10·1 answer
  • Urgent help please! Answer any of the questions!
    10·1 answer
  • The length of some fish are modeled by a von Bertalanffy growth function. For Pacific halibut, this function has the form L(t) =
    10·1 answer
  • Pattern in 6, 7, 13, 20, ?
    11·1 answer
  • Hello! I needed help with answering question 2 and 3, thanks sm :)
    12·1 answer
  • Consider △BTW as pictured below.<br><br><br> Find W.
    10·1 answer
  • (1) [6pts] Let R be the relation {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)} defined on the set {0, 1, 2, 3}. Find the foll
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!