1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
14

Given that angle a = 25° and angle b = 60°, work out X.

Mathematics
1 answer:
ArbitrLikvidat [17]3 years ago
8 0

Answer:

95

Step-by-step explanation:

You might be interested in
1/2 divided by 2 equal to?
valkas [14]

Answer:

.25

Step-by-step explanation:

1/2 / 2 = .25

A like would help me :)

5 0
3 years ago
Read 2 more answers
The weights of five oranges are 7.47 ounces, 7.23 ounces, 6.46 ounces, 7.48 ounces, and 6.81 ounces. Using the clustering estima
alexandr402 [8]
Using the clustering estimation technique the approximate total weight oranges is 35 ounces.
5 0
2 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
A rectangular prism has a volume of 3 m3 , a length of 30 cm , and a width of 40 cm . what is the height of the prism ?
olya-2409 [2.1K]
V = lwh
3 = (30)(40)(h)
3 = (1200)(h)
<u>    </u><u>3  </u><u>  </u><u /> = <u>1200h</u>
 1200      1200
1/400 = h
6 0
3 years ago
I need help don’t understand
Tasya [4]
C. YFC hope this helps!!!
5 0
2 years ago
Other questions:
  • Dr. Lawrence is the director of Counseling Services at her university. She is planning to conduct a survey of 100 students at th
    11·1 answer
  • Maggie's brother is 6 years younger than four times her age. The sum of their ages is 39. How old is Maggie?
    12·1 answer
  • Lauren coordinates a construction projects for a cement company. A government project requires constructing two rectangular conc
    10·1 answer
  • How to determine if an equation is a function?
    7·1 answer
  • Evaluate -3x 3 y 2, if x = -2 and y = -1. -24 24 36 -36
    8·1 answer
  • 1. A coin had a value of $257.00 in 1995. Its value has been increasing at 9% per year
    5·1 answer
  • Find the value of x, &amp; y.<br> 3x-y+8x-7=x+2y+5x+3y
    8·1 answer
  • Crop researchers plant 15 plots with a new variety of corn. The yields in bushels per acre are: 138.0 139.1 113.0 132.5 140.7 10
    6·1 answer
  • Can someone help me as soon as possible please
    14·1 answer
  • Find the distance between A (2,6) and N (5, 10). Round<br> To the nearest tenth
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!