1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
2 years ago
14

Is parallel to 3x-5y=7 and passes through (0,-6)

Mathematics
1 answer:
oksian1 [2.3K]2 years ago
5 0
Yes yes it isssssssssss
You might be interested in
A random variable X has a gamma density function with parameters α= 8 and β = 2.
DerKrebs [107]

I know you said "without making any assumptions," but this one is pretty important. Assuming you mean \alpha,\beta are shape/rate parameters (as opposed to shape/scale), the PDF of X is

f_X(x) = \dfrac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} = \dfrac{2^8}{\Gamma(8)} x^7 e^{-2x}

if x>0, and 0 otherwise.

The MGF of X is given by

\displaystyle M_X(t) = \Bbb E\left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x) \, dx = \frac{2^8}{\Gamma(8)} \int_0^\infty x^7 e^{(t-2) x} \, dx

Note that the integral converges only when t.

Define

I_n = \displaystyle \int_0^\infty x^n e^{(t-2)x} \, dx

Integrate by parts, with

u = x^n \implies du = nx^{n-1} \, dx

dv = e^{(t-2)x} \, dx \implies v = \dfrac1{t-2} e^{(t-2)x}

so that

\displaystyle I_n = uv\bigg|_{x=0}^{x\to\infty} - \int_0^\infty v\,du = -\frac n{t-2} \int_0^\infty x^{n-1} e^{(t-2)x} \, dx = -\frac n{t-2} I_{n-1}

Note that

I_0 = \displaystyle \int_0^\infty e^{(t-2)}x \, dx = \frac1{t-2} e^{(t-2)x} \bigg|_{x=0}^{x\to\infty} = -\frac1{t-2}

By substitution, we have

I_n = -\dfrac n{t-2} I_{n-1} = (-1)^2 \dfrac{n(n-1)}{(t-2)^2} I_{n-2} = (-1)^3 \dfrac{n(n-1)(n-2)}{(t-2)^3} I_{n-3}

and so on, down to

I_n = (-1)^n \dfrac{n!}{(t-2)^n} I_0 = (-1)^{n+1} \dfrac{n!}{(t-2)^{n+1}}

The integral of interest then evaluates to

\displaystyle I_7 = \int_0^\infty x^7 e^{(t-2) x} \, dx = (-1)^8 \frac{7!}{(t-2)^8} = \dfrac{\Gamma(8)}{(t-2)^8}

so the MGF is

\displaystyle M_X(t) = \frac{2^8}{\Gamma(8)} I_7 = \dfrac{2^8}{(t-2)^8} = \left(\dfrac2{t-2}\right)^8 = \boxed{\dfrac1{\left(1-\frac t2\right)^8}}

The first moment/expectation is given by the first derivative of M_X(t) at t=0.

\Bbb E[X] = M_x'(0) = \dfrac{8\times\frac12}{\left(1-\frac t2\right)^9}\bigg|_{t=0} = \boxed{4}

Variance is defined by

\Bbb V[X] = \Bbb E\left[(X - \Bbb E[X])^2\right] = \Bbb E[X^2] - \Bbb E[X]^2

The second moment is given by the second derivative of the MGF at t=0.

\Bbb E[X^2] = M_x''(0) = \dfrac{8\times9\times\frac1{2^2}}{\left(1-\frac t2\right)^{10}} = 18

Then the variance is

\Bbb V[X] = 18 - 4^2 = \boxed{2}

Note that the power series expansion of the MGF is rather easy to find. Its Maclaurin series is

M_X(t) = \displaystyle \sum_{k=0}^\infty \dfrac{M_X^{(k)}(0)}{k!} t^k

where M_X^{(k)}(0) is the k-derivative of the MGF evaluated at t=0. This is also the k-th moment of X.

Recall that for |t|,

\displaystyle \frac1{1-t} = \sum_{k=0}^\infty t^k

By differentiating both sides 7 times, we get

\displaystyle \frac{7!}{(1-t)^8} = \sum_{k=0}^\infty (k+1)(k+2)\cdots(k+7) t^k \implies \displaystyle \frac1{\left(1-\frac t2\right)^8} = \sum_{k=0}^\infty \frac{(k+7)!}{k!\,7!\,2^k} t^k

Then the k-th moment of X is

M_X^{(k)}(0) = \dfrac{(k+7)!}{7!\,2^k}

and we obtain the same results as before,

\Bbb E[X] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=1} = 4

\Bbb E[X^2] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=2} = 18

and the same variance follows.

6 0
2 years ago
Pls help me solve this problem
e-lub [12.9K]

Answer:

why dont you use photo math

Step-by-step explanation:

3 0
3 years ago
Anybody know please help
Reil [10]

Answer:

ok

Step-by-step explanation:

1

5 0
2 years ago
You play the following game against your friend. You have 2 urns and 4 balls One of the balls is black and the other 3 are white
Rom4ik [11]

Answer:

Part a: <em>The case in such a way that the chances are minimized so the case is where all the four balls are in 1 of the urns the probability of her winning is least as 0.125.</em>

Part b: <em>The case in such a way that the chances are maximized so the case  where the black ball is in one of the urns and the remaining 3 white balls in the second urn than, the probability of her winning is maximum as 0.5.</em>

Part c: <em>The minimum and maximum probabilities of winning  for n number of balls are  such that </em>

  • <em>when all the n balls are placed in one of the urns the probability of the winning will be least as 1/2n</em>
  • <em>when the black ball is placed in one of the urns and the n-1 white balls are placed in the second urn the probability is maximum, as 0.5</em>

Step-by-step explanation:

Let us suppose there are two urns A and A'. The event of selecting a urn is given as A thus the probability of this is given as

P(A)=P(A')=0.5

Now the probability of finding the black ball is given as

P(B)=P(B∩A)+P(P(B∩A')

P(B)=(P(B|A)P(A))+(P(B|A')P(A'))

Now there can be four cases as follows

Case 1: When all the four balls are in urn A and no ball is in urn A'

so

P(B|A)=0.25 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.25*0.5)+(0*0.5)

P(B)=0.125;

Case 2: When the black ball is in urn A and 3 white balls are in urn A'

so

P(B|A)=1.0 and P(B|A')=0 So the probability of black ball is given as

P(B)=(1*0.5)+(0*0.5)

P(B)=0.5;

Case 3: When there is 1 black ball  and 1 white ball in urn A and 2 white balls are in urn A'

so

P(B|A)=0.5 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.5*0.5)+(0*0.5)

P(B)=0.25;

Case 4: When there is 1 black ball  and 2 white balls in urn A and 1 white ball are in urn A'

so

P(B|A)=0.33 and P(B|A')=0 So the probability of black ball is given as

P(B)=(0.33*0.5)+(0*0.5)

P(B)=0.165;

Part a:

<em>As it says the case in such a way that the chances are minimized so the case is case 1 where all the four balls are in 1 of the urns the probability of her winning is least as 0.125.</em>

Part b:

<em>As it says the case in such a way that the chances are maximized so the case is case 2 where the black ball is in one of the urns and the remaining 3 white balls in the second urn than, the probability of her winning is maximum as 0.5.</em>

Part c:

The minimum and maximum probabilities of winning  for n number of balls are  such that

  • when all the n balls are placed in one of the urns the probability of the winning will be least given as

P(B|A)=1/n and P(B|A')=0 So the probability of black ball is given as

P(B)=(1/n*1/2)+(0*0.5)

P(B)=1/2n;

  • when the black ball is placed in one of the urns and the n-1 white balls are placed in the second urn the probability is maximum, equal to calculated above and is given as

P(B|A)=1/1 and P(B|A')=0 So the probability of black ball is given as

P(B)=(1/1*1/2)+(0*0.5)

P(B)=0.5;

5 0
3 years ago
Will give brainly if right
garri49 [273]

Answer:

you are correct, it is all of the above

8 0
2 years ago
Other questions:
  • If f(x) = 6x - 5 and (x) = -x + 1 , what is the value of f(g(-3)).
    12·1 answer
  • HELLLPPPPPP!!!!!!!!!!!
    5·2 answers
  • David divided 16.24 by 4 and got the quotient 4.6. Find the correct quotient and tell what you think David did wrong.
    15·1 answer
  • The quotient of 5 subtracted from a number and 7 is 4.2?
    13·1 answer
  • find the distance traveled by a train on a circular track road with radius of 78.8 m which will cause the train to change direct
    10·1 answer
  • Subtract 5/6-(-4/9)<br><br> Please
    14·2 answers
  • Anna is in a cave 48 feet below the cave entrance. She descends 11 feet, then ascends 15 feet. Find he
    9·1 answer
  • -7--8=56<br> O True<br> O False
    14·1 answer
  • 2) Jason has 48 violet balloons, he gave Joan 36 of the balloons.
    5·2 answers
  • Can you help please answer will give Max points
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!