Answer:
f(x)=
x-
Step-by-step explanation:
First put 7x-5y=6 into slope intercept form
y=
x-
Then put it into f(x) form
Ford Family consists of:
a) 2 adults
The price of ticket for each adult is $18.55. This can be approximated to $19 if we round it to nearest dollar. So the price of ticket for 2 adults will be 2 x 19 = $38
b) 3 children between ages 2 and 10.
Ticket for each child between ages 2 - 10 is $12.59 which can be approximated to $13. So ticket price for 3 children will be 3 x 13 = $39
c) 2 children below the age of 2.
Ticket price for each child is $6.54 which can approximated as $7. So ticket price for 2 children will be 2 x 7 = $14
The estimated total amount due on the family equals = 38 + 39 + 14 = $91
In each of the 3 cases we rounded up the values. So this means the actual amount must be slightly lesser than $91. The actual bill was $87.95 which is close to $91 and lesser than it. Hence we can conclude that $87.95 is the correct amount due for Ford Family.
Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
P(brown) = 12% = 0.12
P(Yellow) = 15% = 0.15
P(Red) = 12% = 0.12
P(blue) = 23% = 0.23
P(orange) = 23% = 0.23
P(green) = 15% = 0.15
A.) Compute the probability that a randomly selected peanut M&M is not yellow.
P(not yellow) = P(Yellow)' = 1 - P(Yellow) = 1 - 0.15 = 0.85
B.) Compute the probability that a randomly selected peanut M&M is brown or red.
P(Brown) or P(Red) :
0.12 + 0.12 = 0.24
C.) Compute the probability that three randomly selected peanut M&M’s are all brown.
P(brown) * P(brown) * P(brown)
0.12 * 0.12 * 0.12 =0.001728
D.) If you randomly select three peanut M&M’s, compute that probability that none of them are blue.
P(3 blue)' = 1 - P(3 blue)
P(3 blue) = 0.23 * 0.23 * 0.23 = 0.012167
1 - P(3 blue) = 1 - 0.012167 = 0.987833
If you randomly select three peanut M&M’s, compute that probability that at least one of them is blue.
P(1 blue) + p(2 blue) + p(3 blue)
(0.23) + (0.23*0.23) + (0.23*0.23*0.23)
0.23 + 0.0529 + 0.012167
= 0.295067
D because ugh I don’t feel like explaining