Answer:
First, let's determine how many moles of oxygen we have.
Atomic weight oxygen = 15.999
Molar mass O2 = 2*15.999 = 31.998 g/mol
We have 3 drops at 0.050 ml each for a total volume of 3*0.050ml = 0.150 ml
Since the density is 1.149 g/mol,
we have 1.149 g/ml * 0.150 ml = 0.17235 g of O2
Divide the number of grams by the molar mass to get the number of moles 0.17235 g / 31.998 g/mol = 0.005386274 mol
Now we can use the ideal gas law. The equation PV = nRT where P = pressure (1.0 atm) V = volume n = number of moles (0.005386274 mol) R = ideal gas constant (0.082057338 L*atm/(K*mol) ) T = Absolute temperature ( 30 + 273.15 = 303.15 K)
Now take the formula and solve for V, then substitute the known values and solve.
PV = nRT V = nRT/P V = 0.005386274 mol * 0.082057338 L*atm/(K*mol) * 303.15 K / 1.0 atm V = 0.000441983 L*atm/(K*) * 303.15 K / 1.0 atm V = 0.133987239 L*atm / 1.0 atm V = 0.133987239 L
So the volume (rounded to 3 significant figures) will be 134 ml.
The most common pairing would be sodium forming an ion after transfering an electron to chlorine
Answer:
Because it contains only two elements.
Explanation:
A binary compound is a compound made up of only two elements. Barium chloride contains:
1. Barium.
2. Chlorine.
Since Barium chloride contains only two elements, it is therefore a binary compound.
Answer:
Option C. 1
Explanation:
Step 1:
Determination of the Neutron of both isotopes. This is illustrated below.
For isotope y xA:
Mass number = y
Atomic number = x
Neutron =..?
Atomic number = proton number = x
Mass number = Proton + Neutron
y = x + Neutron
Rearrange
Neutron = y – x
For isotope (y + 1) xA:
Mass number = y + 1
Atomic number = x
Neutron =.?
Atomic number = proton number = x
Mass number = Proton + Neutron
y + 1 = x + Neutron
Rearrange
Neutron = y + 1 – x
Step 2:
Determination of the difference between the neutron number of both isotopes. This is illustrated below:
For isotope y xA:
Neutron number = y – x
For isotope (y + 1) xA:
Neutron number = y + 1 – x
Difference in neutron number
=> (y + 1 – x) – (y – x)
=> y + 1 – x – y + x
Rearrange
=> y – y + 1 – x + x
=> 1
Therefore, the difference in the neutron number of both isotopes is 1