ΔAOB is a right angled triangle. Therefore the Pythagorean Theorem applies in this situation.
θ is the angle from a standard position of the line OA
The length of the y component is √(1-0)2 +(-3-(-3))2] =√(12+ 02) = 1 A(-3,1) to B(-3,0) which is opposite
Then the length of the x-component is √[(-3-0)2 +(0-0)2] = √(9+0)= 3 B(-3,0) to O(0,0) which is adjacent
The length of vector OA is √[(-3-0)2 + (1-0)2] = √(9+1) = √(10) A(-3,1) to O(0,0) which is the hypotenuse of the triangle
θ = 180 - α
sinθ = sin(180-α) = opposite/hypotenuse = 1/√10
cosθ = adjacent/hypotenuse = -3/√10
tanθ = opposite/adjacent = 1/-3 = -1/3
α= arcsin(1/√10) ≈ 18
θ =180 -18 ≈162
Answer:
HERE IS YOUR ANSWER
Step-by-step explanation:
Use the mirror equation:
1/di + 1/do = 1/f
where di = -10 cm and f = +15 cm. (Note that di is negative if the image is virtual.)
Substitute and solve for do.
1/do + 1/(-10 cm) = 1/(15 cm)
1/do = 1/(15 cm) - 1/(-10 cm) = 5/(30 cm)
do = 6 cm
Hope it helps you
Regards,
Rachana
Here we must see in how many different ways we can select 2 students from the 3 clubs, such that the students <em>do not belong to the same club. </em>We will see that there are 110 different ways in which 2 students from different clubs can be selected.
So there are 3 clubs:
- Club A, with 10 students.
- Club B, with 4 students.
- Club C, with 5 students.
The possible combinations of 2 students from different clubs are
- Club A with club B
- Club A with club C
- Club B with club C.
The number of combinations for each of these is given by the product between the number of students in the club, so we get:
- Club A with club B: 10*4 = 40
- Club A with club C: 10*5 = 50
- Club B with club C. 4*5 = 20
For a total of 40 + 50 + 20 = 110 different combinations.
This means that there are 110 different ways in which 2 students from different clubs can be selected.
If you want to learn more about combination and selections, you can read:
brainly.com/question/251701
Can you send a picture of the triangle. Maybe take a screen shot?