If the co-vertices are (0, 3) and (0, -3) where x is 0 and y has a value, then y is the minor axis. That means that the x axis is the major axis. Because of what the co-vertices are, the center of the ellipse is at the origin. The formula for an ellipse that has a horizontal major axis is

. The a value will always be larger than the b value, therefore, the a value goes under the coordinate that is the major axis. Here, its the x-axis. a is the distance that the outer edge of the ellipse is from the center. It's 8 units away from the center along the x axis and 3 units along the y axis from the center. So a = 8 and a^2 = 64; b = 3 and b^2 = 9. Our formula then is
Answer:
90.244
Step-by-step explanation:
111 ÷ 1.23 = 90.244
Answer:
5% account = $1,240
10% account = $2,190
Step-by-step explanation:
Let's assume the amount of savings in the 5% account is x.
Thus the amount of savings in the 10% account is (x + $950).
We can write the following equation from the interest amount:
[5% x ] + [10% (x + $950)] = $281
5%x + 10%x + $95 = S281
15%x = $186
x = $1,240
There is $1,240 in the 5% account
Therefore, on the 10% account there is $1,240 + $950 = $2,190
<span>a) Intervals of increase is where the derivative is positive
b) </span> <span>Intervals of decrease is where the derivative is negative. </span>
c) <span>Inflection points of the function are where the graph changes concavity that is the point where the second derivative is zero </span>
<span>d)
Concave up- Second derivative positive </span>
<span>Concave down- second derivative negative </span>
f(x) = 4x^4 − 32x^3 + 89x^2 − 95x + 31
<span>f '(x) = 16x^3 - 96x^2 + 178x - 95 </span>
<span>f "(x) = 48x^2 - 192x + 178 </span>
<span>By rational root theorem the f '(x) has one rational root and factors to: </span>
<span>f '(x) = (2x - 5)*(8x^2 - 28x + 19) </span>
<span>Using the quadratic formula to find it's two irrational real roots. </span>
<span>The f "(x) = 48x^2 - 192x + 178 only has irrational real roots, use quadratic formula which will be the inflection points as well.</span>