C is 666666688888 from my lookings. Jk
Answer:
5 length
Step-by-step explanation:
The diagram attached shows two equilateral triangles ABC & CDE. Since both squares share one side of the square BDFH of length 10, then their lengths will be 5 each. To obtain the largest square inscribed inside the original square BDFH, it makes sense to draw two other equilateral triangles AGH & EFG at the upper part of BDFH with length equal to 5.
So, the largest square that can be inscribe in the space outside the two equilateral triangles ABC & CDE and within BDFH is the square ACEG.
I'm guessing the 20 percent off is from the $36.81 so you take 36.81 times 0.80 making it $29.448. Take 90 dollars and minus that amount.
Answer: $60.552
Rounded Answer: $60.55 or $60.60 or $61
Not sure if this helped, but yeah.....
I’m to lazy to figure out this question
First you plot in the y-intercept of the equation. To find the y-intercept, substitute 0 into x. -3m will cancel our giving you y=5. x=0, y=5, the first ordered pair is (0,5). Now after you plot in the y-intercept, use your slope, which is -3, to graph the points of the equation. Starting from (0,5), move down 3 spaces on the y-axis (because it’s -3) and you’ll end up at (0,2). Next move over 1 ( all slopes with just a whole number moves on the x-axis 1 since the whole number divided by 1 doesn’t change the slope number) to the right because it’s a negative linear equation so it’ll go downward. After moving right, you’ll get (1,2). Do a couple more points starting from (1,2) then the 3rd point ABD and so on to get 3 or more points to be able to draw a linear line.