The answer is Neogene
Explanation:
It cannot be Cenozoic because that is an era. Not a period. Paleogene, Neogene, and Quaternary (our current period) are all periods within the Cenozoic Era (our current era). On the geologic time scale, there are Eras, Periods, and Epochs (and a few more classifications). Humans first appeared in the Miocene epoch which is an epoch in the Neogene period (in the Cenozoic era).
This is why the answer is Neogene.
Hope this helps...
A. Pride I believe or B. Fear of strangers
Answer:
1. CGAGGTT → CGTT (Deletion)
2. ATTCGG → ATTCGGATTCGG (Duplication)
3. CTTAAT → TAATTC (Inversion)
4. CTTAAT → CTTAACGCT (Insertion)
5. CGAT → CTAT (Substitution)
6. CCGGTT + TTAGGC = CCGTTA + GTTGGC (Translocation)
Explanation:
1. CGAGGTT → CGTT (Deletion) ---- This is called deletion because it involves the removal of 3 base pairs (AGG) from the DNA sequence.
2. ATTCGG → ATTCGGATTCGG (Duplication) ---- In this case, the particular sequence (ATTCGG) is copied again or duplicated.
3. CTTAAT → TAATTC (Inversion)----- This is called inversion mutation because the DNA sequence breaks off and is reattached but this time in a reverse order i.e. CTT becomes TTC, placing the last base first and the first base last.
4. CTTAAT → CTTAACGCT (Insertion) ------ This is called insertion mutation because it involves the addition of extra base pairs (CGC) into the sequence. The Insertion occurs between the last A and T nucleotide.
5. CGAT → CTAT (Substitution) ----- This is called substitution because Guanine base is replaced by Thymine in the DNA sequence. It is specifically called a transversion substitution because a purine (Guanine) is replaced by a pyrimidine (Thymine). It is called a point mutation because it involves a single base.
6. CCGGTT + TTAGGC = CCGTTA + GTTGGC (Translocation) ----- in this case, CCGGTT and TTAGGC are sequences on different chromosomes. Portions of sequence on the first chromosome (GTT) and second chromosome (TTA) breaks off and gets reattached/exchanged in each other i.e. the first chromosome gets TTA while the second gets GTT. This kind of mutation is called translocation.
Sexual reproduction creates more genaric diversity because it needs two creatures.
While asectual only needs one person.
if it only requires one person then the offspring recieves that persons genes.
in sexual reproduction it requires two people wich means tge offspring receves half of each persons genes and since no one has the ecact same genes then it creates more genetic diversity.
Answer:
See the answer below
Explanation:
<em>The DNA of eukaryotic organisms being present in the nucleus while the protein-synthesizing organelle, the ribosome being present in the cytoplasm poses a spatial problem. It means that transcribed DNAs (messenger RNA) in the nucleus would have to somehow be transported to the ribosome in order for the cell to successfully synthesize proteins.</em>
The problem of transporting the messenger RNA is solved by two features of the cell:
- The presence of pores in the nuclear envelop
- The presence of transport proteins in the nucleus
<u>The mRNA binds to the transport proteins to form mRNA-protein complexes and is transported through the nuclear pores, often with the assistance of ATP. </u>