Answer:
See explanation and hopefully it answers your question.
Basically because the expression has a hole at x=3.
Step-by-step explanation:
Let h(x)=( x^2-k ) / ( hx-15 )
This function, h, has a hole in the curve at hx-15=0 if it also makes the numerator 0 for the same x value.
Solving for x in that equation:
Adding 15 on both sides:
hx=15
Dividing both sides by h:
x=15/h
For it be a hole, you also must have the numerator is zero at x=15/h.
x^2-k=0 at x=15/h gives:
(15/h)^2-k=0
225/h^2-k=0
k=225/h^2
So if we wanted to evaluate the following limit:
Lim x->15/h ( x^2-k ) / ( hx-15 )
Or
Lim x->15/h ( x^2-(225/h^2) ) / ( hx-15 ) you couldn't use direct substitution because of the hole at x=15/h.
We were ask to evaluate
Lim x->3 ( x^2-k ) / ( hx-15 )
Comparing the two limits h=5 and k=225/h^2=225/25=9.
Answer:
I dont know what that, but I think Its 3
Answer:
the answer would be 5/8
Step-by-step explanation:
0.625/1 times 1000/1000= 625/1000
625/1000 divided by 125 = 5/8
hoped this helped let me know if you got it right
Answer: Given : Joe’s Earnings and hour worked
The relationship between money earned and hours worked is linear.
Joe computes the slope between (4, 30) and (12, 90), then computes the slope between (4, 30) and (10, 75).
To Find : How do the two slopes compare?
Solution:
Hours worked Money earned
4 $30
10 $75
12 $90
22 $165
slope between (4, 30) and (12, 90),
= (90 - 30)/(12 - 4)
= 60/8
= 15/2
slope between (4, 30) and (10, 75)
= (75 - 30)/(10-4)
= 45/6
= 15/2
The slope between (4, 30) and (12, 90) and between (4, 30) and (10, 75) is the same.
Both Slopes are same.
i hope this helped and have a nice day/night
Answer:
well, the cheap answer is
f(x) = -3| x - 1 | is really just f(x) = -3| x - 1 | + 0.
now, what value of "x" makes the absolute value expression to 0?
well, let's just set it to 0 and check,
x - 1 = 0
x = 1
so if "x" ever becomes 1, the | x - 1| will turn to 0, therefore, the vertex is at
f(x) = -3| (1) - 1 | + 0 --------------> ( 1, 0 )