1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
15

Plz i wanna answer of this question i will mark a brainlist for how will solve it completely

Mathematics
2 answers:
Ivanshal [37]3 years ago
6 0

Answer:

<h3>by construction —</h3>

<h2>c = 7 units</h2><h2>b = 13 units</h2>

Hop it's helpful!

Step-by-step explanation:

check my attachment for detailed explanation!

Alik [6]3 years ago
5 0
C= 13 units
B= 12 units
You might be interested in
ASAP help me please thanks
Marianna [84]

Answer: I think it's D

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find an expression for the perimeter of rectangle ABCD. Use the formula P= 2l + 2w.
natita [175]

Answer:

(b)

P = [4(4a + 3b]/(2a + b)

Step-by-step explanation:

P = 2L + 2W

P = [2(5a + 4b) + 2(3a + 2b)]/(2a + b)

P = [10a + 8b + 6a + 4b]/(2a + b)

P = [16a + 12b]/(2a + b)

P = [4(4a + 3b]/(2a + b)

3 0
3 years ago
8-3(6-6x) please help
Helen [10]
Hope this helps have a nice day

4 0
3 years ago
Read 2 more answers
Find the area of a triangle with a base of 10 inches and a height of 5 inches
Semmy [17]

Answer:

area = 25 in^2

Step-by-step explanation:

area = 1/2(10)(5) = 25 in^2

5 0
3 years ago
Read 2 more answers
Find the 2th term of the expansion of (a-b)^4.​
vladimir1956 [14]

The second term of the expansion is -4a^3b.

Solution:

Given expression:

(a-b)^4

To find the second term of the expansion.

(a-b)^4

Using Binomial theorem,

(a+b)^{n}=\sum_{i=0}^{n}\left(\begin{array}{l}n \\i\end{array}\right) a^{(n-i)} b^{i}

Here, a = a and b = –b

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

Substitute i = 0, we get

$\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}=1 \cdot \frac{4 !}{0 !(4-0) !} a^{4}=a^4

Substitute i = 1, we get

$\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}=\frac{4 !}{3!} a^{3}(-b)=-4 a^{3} b

Substitute i = 2, we get

$\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}=\frac{12}{2 !} a^{2}(-b)^{2}=6 a^{2} b^{2}

Substitute i = 3, we get

$\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}=\frac{4}{1 !} a(-b)^{3}=-4 a b^{3}

Substitute i = 4, we get

$\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=1 \cdot \frac{(-b)^{4}}{(4-4) !}=b^{4}

Therefore,

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

=\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}+\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}+\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}+\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}+\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}

Hence the second term of the expansion is -4a^3b.

3 0
3 years ago
Other questions:
  • What is a quadrilateral?
    13·2 answers
  • Turning improper fractions into mixed numbers . Help?
    10·1 answer
  • What is 0.24 times 2.68
    9·2 answers
  • Write number to make each line have the sum 7
    14·1 answer
  • What is arc BC equal to?
    11·1 answer
  • VOTING BRAINLIEST!!!!
    12·2 answers
  • What is the value of (3.1)2 ?<br> A) 6.2<br> B) 9.61<br> C) 0.961<br> D) 9.1
    15·1 answer
  • Terry Barlett worked from 7:00 am to 10:45 am and from 12:30 pm to 3:15 pm at a chocolate shop. Find the total hours
    13·1 answer
  • 4x+3+3=-2<br> help asappl
    14·2 answers
  • Ma Johnson gives 1/6 of 1 pizza to each of her 25 students
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!