Answer:
107, there is two lines after that so 108 109 and the last line is 110 so your answer will be 107 degrees.
Step-by-step explanation:
The difference of a number and seven is x - 7. So twice that, would be:
2(x - 7)
Answer:
a. We reject the null hypothesis at the significance level of 0.05
b. The p-value is zero for practical applications
c. (-0.0225, -0.0375)
Step-by-step explanation:
Let the bottles from machine 1 be the first population and the bottles from machine 2 be the second population.
Then we have
,
,
and
,
,
. The pooled estimate is given by
a. We want to test
vs
(two-tailed alternative).
The test statistic is
and the observed value is
. T has a Student's t distribution with 20 + 25 - 2 = 43 df.
The rejection region is given by RR = {t | t < -2.0167 or t > 2.0167} where -2.0167 and 2.0167 are the 2.5th and 97.5th quantiles of the Student's t distribution with 43 df respectively. Because the observed value
falls inside RR, we reject the null hypothesis at the significance level of 0.05
b. The p-value for this test is given by
0 (4.359564e-10) because we have a two-tailed alternative. Here T has a t distribution with 43 df.
c. The 95% confidence interval for the true mean difference is given by (if the samples are independent)
, i.e.,
where
is the 2.5th quantile of the t distribution with (25+20-2) = 43 degrees of freedom. So
, i.e.,
(-0.0225, -0.0375)
You could set up a ratio given that it is a 5% solution (5% of the total, not 5% of water.
5/100 = x/473 You need to find out how much is vinegar. Cross multiply
5 * 473 = 100 x Find the number on the left.
2365 = 100 x Divide by 100
2365 / 100 = x
x = 23.65 mL of vinegar.
The water is found by subtraction
473 - 23.65 = 449.35 mL of water.
The line integral along the given positively oriented curve is -216π. Using green's theorem, the required value is calculated.
<h3>What is green's theorem?</h3>
The theorem states that,

Where C is the curve.
<h3>Calculation:</h3>
The given line integral is

Where curve C is a circle x² + y² = 4;
Applying green's theorem,
P = 9y³; Q = -9x³
Then,



⇒ 
Since it is given that the curve is a circle i.e., x² + y² = 2², then changing the limits as
0 ≤ r ≤ 2; and 0 ≤ θ ≤ 2π
Then the integral becomes

⇒ 
⇒ 
⇒ 
⇒ 
⇒ ![-108[2\pi - 0]](https://tex.z-dn.net/?f=-108%5B2%5Cpi%20-%200%5D)
⇒ -216π
Therefore, the required value is -216π.
Learn more about green's theorem here:
brainly.com/question/23265902
#SPJ4