Answer:
see explanation
Step-by-step explanation:
the sum to n terms of an arithmetic sequence is
=
[2a + (n - 1)d ]
where d is the common difference and a is the first term
here d = 9 - 7 = 7 - 5 = 2 and a = 5, hence
=
[(2 × 5) + 2(n - 1) ]
=
(10 + 2n - 2)
=
(2n + 8)
= n² + 4n
When sum = 165, then
n² + 4n = 165 ← rearrange into standard form
n² + 4n - 165 = 0 ← in standard form
(n + 15)(n - 11) = 0 ← in factored form
equate each factor to zero and solve for n
n + 15 = 0 ⇒ n = - 15
n - 11 = 0 ⇒ n = 11
but n > 0 ⇒ n = 11
Answer:
i would say c.
hope this helps:)sorry if it doesnt
plz make brainliest
The in is -5 the out for 7 is -21 the out for -3 is 9the infor 15 is -5 the out for -10 is 30
Answer:
= 78
= 3.5
Step-by-step explanation:
First we need to find
.
We can use the equation
to solve for
.
We can then change that equation to
, since the Commutative Property of Addition says that you can have any addition in any order.
Now, we can solve the equation.

Now that we solved
, we can now solve for
.
Since 25 equals
, we can solve the equation
.
Here is how you solve it:

Since
equals 3.5, which is the simplest form, that is the answer.
Hope this helps, and please mark me brainliest! :)
Step-by-step explanation:
Let h be the number of hours.
Total Cost = Fixed Costs + Variable Cost
= Initial Fee + Hourly Charge
= 75 + 9h
Given,

Since the car cannot be rent part of an hour, the highest possible whole number is 19 hours.