1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
15

La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?

Mathematics
1 answer:
malfutka [58]3 years ago
3 0

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

You might be interested in
What is the value of   for x = 2 and y = –4?
Nata [24]
The answer or value to this question will be D
6 0
3 years ago
How do linear and exponential functions compare over time?
Murljashka [212]

Answer:

Exponential Functions

In linear functions, rate of change is constant: as x goes up, y will go up a consistent amount. In exponential functions, the rate of change increases by a consistent multiplier—it will never be the same, but there will be a pattern.

8 0
3 years ago
Marking brainliest <br><br> Don’t know what to write for the last 2
nlexa [21]

Answer:

Business, management, marketing and technology.

Engineering, manufacturing and industrial technology.

i am not sure but i hope it will help you.

please mark me as brainlest.

4 0
3 years ago
CAN SOMEONE HELP ME FIND THE DISTANCE..​
kirill115 [55]

The angle of elevation from point C to point A is 32^{\circ}

<em><u>Solution:</u></em>

Given that we have to find the angle of elevation from point C to Point A

Given in figure that, angle A = 58^{\circ}

Given is a right angled triangle ABC where angle B = 90^{\circ}

We have to find angle C

The angle sum property of a triangle states that the angles of a triangle always add up to 180°

Therefore, in given triangle ABC

angle A + angle B + angle C = 180

58^{\circ} + 90^{\circ} + C = 180^{\circ}

148^{\circ} + C = 180^{\circ}\\\\C = 180^{\circ} - 148^{\circ}\\\\C = 32^{\circ}

Therefore angle C = 32^{\circ}

5 0
3 years ago
One day in October 2005, you could exchange $3 for about 2.5 euros. How many dollars would you have needed to get 8 euros?
frosja888 [35]
10 because 3$ times two is 5 dollars in euros, and 4 dollars is 3 dollars in euros. Therefore if you add 6 and four together you get a total of 10 dollars
5 0
3 years ago
Other questions:
  • Bacteria live in groups called colonies colonies are usually circular the diameter distance across if a particular bacterial col
    9·1 answer
  • Mark all of the whole numbers below.<br><br> 0<br><br> -1<br><br><br><br> 5<br><br> 10
    12·1 answer
  • What is the product of 1.2 and 0.5 expressed as a fraction?
    8·2 answers
  • What are the coordinates of the root of the equation x^2+4x+3=0
    9·1 answer
  • What is the value of x?
    5·2 answers
  • Family A and Family B both have 8 people in their family. The ages of each member is listed below Which statement is correct abo
    6·1 answer
  • Determine which quadrants each coordinate point belong.
    12·2 answers
  • A trapezoid has one base measuring 12', and the other measuring 13'8". What is the area in square feet if the height of the trap
    6·1 answer
  • The largest moth is the Atlas moth. The Atlas moth is
    9·1 answer
  • After 5 years time the mother will be twice older than her daughter, Before 6 years she was 3 times Older than her daughter. Fin
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!