1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
15

La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?

Mathematics
1 answer:
malfutka [58]3 years ago
3 0

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

You might be interested in
Please help, I’m stuck on this one question.
Mamont248 [21]

Answer:

D the last answer

Step-by-step explanation:

As X approaches positive or negative infinity, f(x) would approach negative infinity.

6 0
3 years ago
How do I solve for n?​
Finger [1]
Simple just do normal simple algebra:)
3 0
3 years ago
25 Points<br> 9<br> -3=7(-3)
Ksju [112]
I think the answer is: 6 = -21
8 0
3 years ago
What are the geometric means of 5 and 15
Phantasy [73]

Answer:

2√15

Step-by-step explanation:

7 0
3 years ago
Find the area of this regular polygon.<br> Round to the nearest tenth.<br> 8.65 mm<br> [? ]mm2
nadezda [96]

Answer:

Actually it's not polygon. it's a nonagon. With r=8.65mm″, the law of cosines gives us side a:

a=√{b²+c²−2bc×cos40°}

a=√{149.645−149.645cos40°}

Area Nonagon = (9/4)a²cos40°

=9/4[149.645−149.645cos40°]cot20°

=336.70125[1−cos(40°)]cot(20°)

Applying an identity for the cos(40°) does not get us very far…

= 336.70125[1−(cos2(20°)−1)]cot(20°)

= 336.70125[2−cos2(20°)]cot(20°)

= 336.70125[2−(1−sin2(20°))]cot(20°)

= 336.70125[1+sin2(20°)]cos(20°)sin(20°)

= 336.70125[cot(20°)+sin(20°)cos(20°)]mm²

3 0
3 years ago
Other questions:
  • Given g(x)=5x+1, find g(2)
    5·1 answer
  • Use figure 8.1. Corey Griffin obtained an installment loan of $1000. The annual percentage rate is 8 percent. He must repay the
    14·1 answer
  • Which point is on the graph of a direct variation equation in which k=0.4?
    8·1 answer
  • Answer to 38×21 using area model
    7·1 answer
  • Island A is 250 miles from island B. A ship captain travels 260 miles from island A and then finds that he is off course and 160
    15·2 answers
  • Please help ill give brainlest
    13·2 answers
  • Consider the density curve shown.
    11·1 answer
  • The function c = 100 + 0.30m represents the cost c (in dollars) of renting a car after driving m miles. What would the cost be t
    5·1 answer
  • How many groups of 3/4 are in 6 and 1/2
    5·1 answer
  • What is the value of p in the proportion below?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!