1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
15

La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?

Mathematics
1 answer:
malfutka [58]3 years ago
3 0

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

You might be interested in
Find an equation of the tangent plane to the surface z=ln(x-6y) at the point(7,1,0)
expeople1 [14]

The tangent plane equation of tangent plane is

z = x - 6y -1

This is further explained below.

What is the equation of the tangent plane to the surface z=ln(x-6y) at the point(7,1,0)?

Generally, Given surface is z = ln(x − 6y) ,

Given point is (x_0, y_0 , z_0) = (7, 1, 0)

partially differentiating with respect to x

== >zx = [1/(x - 6y)] (1) = 1/(x - 6y)

zx (7 , 1 , 0) = 1/(7 - 6(1)) = 1

Partially differentiating with respect to y

zy = [1/(x - 6y)] (-6)

zy = -6/(x - 6y)

zy(7 , 1 , 0) = -6/(7 - 6(1)) = -6

Equation of tangent plane is z - z_0 = zx(x -x_0) + zy(y - y_0)

z - 0 = 1(x - 7) + (-6)(y - 1)

z = x - 7 -6y + 6

z = x - 6y -1

In conclusion, equation of tangent plane is z = x - 6y -1

Read more about the tangent plane

brainly.com/question/10542585

#SPJ4

8 0
2 years ago
What is the radius of a circle in which a 30° arc is 2 inches long?
marysya [2.9K]
It would be 1 inch and 15 degree arc due to the act that the radius is half.
5 0
3 years ago
Read 2 more answers
Which equation is equivalent to 4s=t+2
Paraphin [41]

Answer:If we're solving for t my work is below:

t = 4 s - 2

If we're solving for s my work is below:

s = t + 2/4

Step-by-step explanation:

7 0
3 years ago
Thinking—Level 2 Get Started! Exit A farm raises cows and chickens. The farmer has a total of 40 animals. One day he counts the
dsp73

Answer:

21 pieces of chickens.

Step-by-step explanation:

Given:

The farmer has a total of 40 animals. ( cows and chicken )

He counts the legs of all his animals and realizes he has a total of 118 legs.

Question asked:

How many chickens does the farmer have ?

Solution:

Let number of chickens = x

Then  number of cows = 40-x

Now, as here given that total number of legs are 118 of all the animals, and as we know that a chicken has two legs and cow has four legs, hence the equation will be :

<u>Total number of legs = Number of legs having chickens + Number of legs having cows</u>

118 = 2x+4(40-x)\\118=2x+160-4x

118=-2x+160

Subtracting both sides by 160

-42=-2x

By adding both sides by minus

42 = 2x\\

By dividing both sides by 2

x =21

Hence, farmer have 21 pieces of chickens.

8 0
3 years ago
Please help me I’ve been stuck I’ll mark you as brainliest if you answer and give 5 stars
zalisa [80]

Answer:

the sum of exterior angles of a polygon is 360°

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the recursive formula for this arithmetic sequence?
    11·1 answer
  • Find the mass of a book that has a weight of 14.7 newtons
    5·1 answer
  • What is an equation of the line that passes through the points (3,1) and (4,4)?
    11·2 answers
  • Please Please Please help me out and answer
    11·1 answer
  • Witch is true statement about the dot plot?
    7·2 answers
  • What is the surface area of the figure below?
    11·1 answer
  • What is the slope of the line passing through the points (-6, 33) and (-2, 15)?
    14·1 answer
  • 6) Order from greatest to smallest: V2.1.40.11.14​
    15·1 answer
  • Is the order that I’m putting them in correct? If it is what are the answers to the others? It it’s wrong what is the correct or
    11·1 answer
  • Hello sorry need help again, please just answer the pictures below.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!