1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
15

La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?

Mathematics
1 answer:
malfutka [58]3 years ago
3 0

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

You might be interested in
Each cone of the hourglass has a height of 12 millimeters. The total height of the sand within the top portion of the hourglass
Ratling [72]

The solution would be like this for this specific problem:

Volume of a cylinder = pi * r^2 * h 

Volume of a cone = 1/3 * pi * r^2 * h 

Total Height = 47

Height of the cone = 12

Height of the cylinder = 35

If the top half is filled with sand, then:

volume (sand) = pi * 4^2 * 36

volume (cone) =  1/3 * pi * 4^2 * 12

Total volume = 1960.353816 cubic millimeters

353816 / (10 * pi) = 62.4 seconds.

It will take 62.4 seconds until all of the sand has dripped to the bottom of the hourglass.

8 0
3 years ago
I need gay guy friends or maybe even more then friends in the future
Kipish [7]
That’s really cool but thanks for free pointss <333
3 0
2 years ago
Find the range for the given data in 115, 534, 122, 599, 417, 289 A) 534 B) 167 C)115 D)484
Tamiku [17]
The answer is 484.Or D.
4 0
3 years ago
Read 2 more answers
Jessica works between 12h and 18h per week at her part-time job. She earns $9.25 per hour. The function p(h) = 9.25h models the
Tpy6a [65]
D. All real numbers between 111 and 166.5 inclusive.

3 0
3 years ago
Can you PLEASE help with problem 4. (IF YOU KNOW IT)
Andru [333]
The total was $29. 
1. Write an equation. 24+(2.50*2)= x
2. Solve your equation using PEMDAS
       *2.5*2=5
       *5+24=
3. Simplify equation. 
   5+24=29
4 0
3 years ago
Other questions:
  • is 14 closer to 10 0r 15 or 20, is 11 closer 10 or 15 or 20 ,is 18 closer to 15 or 10 or 20, is 16 closer to 10 or 15 or 20
    6·2 answers
  • 4 brothers share 2 sandwiches equally
    13·1 answer
  • If you answer 60% of 30 questions correctly, how many did you answer correctly?
    8·2 answers
  • Need help ASAP will mark brainliest
    15·1 answer
  • Which of these systems of linear equations has an infinite number of solutions?
    15·1 answer
  • Use an addition property to solve for a. 10 + (–15) = –15 + a
    8·2 answers
  • Ms lemus buys 7 boxes of snacks .each box has 12 packets of fruit snacks and 18 packets of cashews.tape diagram and multiplicati
    9·1 answer
  • A random sample of 10 employees of a company was selected to estimate the mean one-way commute time for all employees at the com
    12·1 answer
  • Please help me with this, it’s due today!
    6·1 answer
  • Select the expressions that are equivalent to 12x - 6.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!