I’m not sure if this is right but im guessing c.
First we need to determine what the 6 angles must add to. Turns out we use this formula
S = 180(n-2)
where S is the sum of the angles (result of adding them all up) and n is the number of sides. In this case, n = 6. So let's plug that in to get
S = 180(n-2)
S = 180(6-2)
S = 180(4)
S = 720
The six angles, whatever they are individually, add to 720 degrees. The six angles are y, y, 2y-20, 2y-20, 2y-20, 2y-20, <span>
They add up and must be equal to 720, so let's set up the equation to get...
(y)+(y)+(</span>2y-20)+(2y-20)+(2y-20)+(<span>2y-20) = 720
Let's solve for y
</span>y+y+2y-20+2y-20+2y-20+2y-20 = 720
10y-80 = 720
10y-80+80 = 720+80
<span>10y = 800
</span>
10y/10 = 800/10
y = 80
Now that we know the value of y, we can figure out the six angles
angle1 = y = 80 degrees
<span>angle2 = y = 80 degrees
</span><span>angle3 = 2y-20 = 2*80-20 = 140 degrees
</span>angle4 = 2y-20 = 2*80-20 =<span> 140 degrees
</span><span>angle5 = 2y-20 = 2*80-20 = 140 degrees
</span>angle6 = 2y-20 = 2*80-20 =<span> 140 degrees
</span>
and that's all there is to it
Answer:
1/4 ( p - 1/4 q^2).
Step-by-step explanation:
p/4 - q2/16
The greatest common factor is 1/4 so we have the answer:
1/4 ( p - 1/4 q^2).
Answers:
The formula is [f(-1)-f(-4)]/[3]
The value of f(-1) is 3
The value of f(-4) is -3
The average rate of change is 2
==============================================
Explanation:
For the first blank, we use the formula
[ f(b) - f(a) ]/[ b - a ]
where 'a' and 'b' are the endpoints for the x interval
In this case, a = -4 and b = -1. When you plug those values into the formula above, you get...
[ f(b) - f(a) ]/[ b - a]
[ f(-1) - f(-4)]/[ -1 - (-4) ]
[ f(-1) - f(-4)]/[ -1+4 ]
[ f(-1) - f(-4)]/[ 3 ]
which is why the answer is choice C for the first blank
-------------------------------------------
To compute the value of f(-1), we draw a vertical line through -1 on the x axis. This vertical line crosses the diagonal function graph at the point (-1,3). The y value of this point is what we want. Plugging in x = -1 leads to y = 3. This is why f(-1) = 3
If you want, you can draw a horizontal line through (-1,3) and you'll see it touching 3 on the y axis.
-------------------------------------------
Follow similar steps as above to compute f(-4). Draw a vertical line through x = -4 on the x axis. Mark the point where the vertical line crosses the diagonal line. This point is (-4,-3). Optionally draw a horizontal line over til you hit the y axis and you'll find that y = -3 corresponds to x = -4
This is why f(-4) = -3
-------------------------------------------
We'll use the last three sections to compute the average rate of change. Everything combines together building up to this moment.
From the first part, we had the formula
[ f(b) - f(a) ]/[ b - a ]
[ f(-1) - f(-4)]/[ 3 ]
We can replace the "f(-1)" with 3 since we found that f(-1) = 3
Similarly, f(-4) = -3 so we can replace the "f(-4)" with -3
Doing those replacements and simplifying leads to...
[ f(-1) - f(-4)]/[ 3 ]
[ 3 - (-3)]/[ 3 ]
[ 3 + 3]/[ 3 ]
6/3
2
So the average rate of change is 2
Note: because the entire graph is a straight line, the average rate of change for any interval a < x < b is going to be equal to the slope m. In this case, the slope of the line is m = 2/1 = 2. We move up 2 units each time we move to the right 1 unit along the diagonal line.
Answer: SOMEONE LITERALLY ASKED ME THIS YESTERDAY. Also, the answer is t-3<26
Step-by-step explanation:
Just convert it into numbers.