100 because that just isn’t possible
Answer:
The solution is w=8
Step-by-step explanation:
we have
-2w+4=-12
Solve for w
That means -----> isolate the variable w
Subtract 4 both sides
-2w+4-4=-12-4
-2w=-16
Divide by -2 both sides
-2w/-2=-16/-2
w=8
Answer:
You are more likely to win by playing regular defense.
Step-by-step explanation:
Assume out of 100 reviewed games, there were 50 regular defense games and 50 prevent defense games. And out of 50 regular defense games, 38 were win, 12 were lose. And out of 50 prevent defense game, 29 were win, 21 were lose.
Probability to win the game by playing regular defense is:
P(win | regular) = 38/50 = 0.76
Probability to win the game by playing prevent defense is:
P(win | prevent) = 29/50 = 0.58
Since the probability of winning by regular defense game is more than prevent defense game (0.76 > 0.58), you are more likely to win by playing regular defense.
Use the following abbreviations:
y = year,
d = day,
h = hour,
min = minute,
s = second,
ms = millisecond.
Then

Therefore, the correct calculation is
1000 * 60 * 60 * 24 * 365
Answer: 1000 * 60 * 60 * 24 * 365

now, for a rational expression, the domain, or "values that x can safely take", applies to the denominator NOT becoming 0, because if the denominator is 0, then the rational turns to
undefined.
now, what value of "x" makes this denominator turn to 0, let's check by setting it to 0 then.
![\bf 2-x^{12}=0\implies 2=x^{12}\implies \pm\sqrt[12]{2}=x\\\\ -------------------------------\\\\ \cfrac{x^2-9}{2-x^{12}}\qquad \boxed{x=\pm \sqrt[12]{2}}\qquad \cfrac{x^2-9}{2-(\pm\sqrt[12]{2})^{12}}\implies \cfrac{x^2-9}{2-\boxed{2}}\implies \stackrel{und efined}{\cfrac{x^2-9}{0}}](https://tex.z-dn.net/?f=%5Cbf%202-x%5E%7B12%7D%3D0%5Cimplies%202%3Dx%5E%7B12%7D%5Cimplies%20%5Cpm%5Csqrt%5B12%5D%7B2%7D%3Dx%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bx%5E2-9%7D%7B2-x%5E%7B12%7D%7D%5Cqquad%20%5Cboxed%7Bx%3D%5Cpm%20%5Csqrt%5B12%5D%7B2%7D%7D%5Cqquad%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%28%5Cpm%5Csqrt%5B12%5D%7B2%7D%29%5E%7B12%7D%7D%5Cimplies%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%5Cboxed%7B2%7D%7D%5Cimplies%20%5Cstackrel%7Bund%20efined%7D%7B%5Ccfrac%7Bx%5E2-9%7D%7B0%7D%7D)
so, the domain is all real numbers EXCEPT that one.