Answer:
1. Slope =0.667/2.000=0.333
2.c-intercept = 5/1=5.00000
3.p-intercept=5/-3= -1.66667
Answer:
option D
Step-by-step explanation:
![x^{2} + y^{2} = 16\\\\x^{2} = 16- y^{2}](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2B%20y%5E%7B2%7D%20%3D%2016%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%2016-%20y%5E%7B2%7D)
equation 2:
![\frac{x^{2}}{4} - \frac{y^{2}}{25} = 1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B4%7D%20-%20%5Cfrac%7By%5E%7B2%7D%7D%7B25%7D%20%3D%201)
so we have:
![\frac{16- y^{2} }{4}-\frac{y^{2}}{25}= 1](https://tex.z-dn.net/?f=%5Cfrac%7B16-%20y%5E%7B2%7D%20%7D%7B4%7D-%5Cfrac%7By%5E%7B2%7D%7D%7B25%7D%3D%201)
Answer:
64%
Step-by-step explanation:
16 divided by 25 is 0.64 then multiply by 100 to convert a decimal to a percentage which equals 64%.
Answer:
All of them.
Step-by-step explanation:
For rational functions, the domain is all real numbers <em>except</em> for the zeros of the denominator.
Therefore, to find the x-values that are not in the domain, we need to solve for the zeros of the denominator. Therefore, set the denominator to zero:
![x(x-1)(x^2-4)=0](https://tex.z-dn.net/?f=x%28x-1%29%28x%5E2-4%29%3D0)
Zero Product Property:
![x\neq 0\text{ or }x-1\neq 0\text{ or }x^2-4\neq 0](https://tex.z-dn.net/?f=x%5Cneq%200%5Ctext%7B%20or%20%7Dx-1%5Cneq%200%5Ctext%7B%20or%20%7Dx%5E2-4%5Cneq%200)
Solve for the x in each of the three equations. The first one is already solved. Thus:
![x-1\neq 0 \text{ or }x^2-4\neq 0\\x\neq 1\text{ or }x^2\neq 4\\x\neq 1 \text{ or }x\neq\pm 2](https://tex.z-dn.net/?f=x-1%5Cneq%200%20%5Ctext%7B%20or%20%7Dx%5E2-4%5Cneq%200%5C%5Cx%5Cneq%201%5Ctext%7B%20or%20%7Dx%5E2%5Cneq%204%5C%5Cx%5Cneq%201%20%5Ctext%7B%20or%20%7Dx%5Cneq%5Cpm%202)
Thus, the values that <em>cannot</em> be in the domain of the rational function is:
![x=-2,0,1,2](https://tex.z-dn.net/?f=x%3D-2%2C0%2C1%2C2)
Click all the options.
Answer:
I think its A
Step-by-step explanation: