1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
7

Find each probability below -- as a fraction, decimal and percent Will give brainliest

Mathematics
2 answers:
Komok [63]3 years ago
7 0

Answer:  

I was not sure to what decimal point to round it to

a) Fraction: 2/7    Decimal: 0.28571   Percent: 28.571 %

b) Fraction: 5/7    Decimal: 0.71428   Percent: 71.428 %

c) Fraction: 1/7     Decimal: 0.14285   Percent: 14.285 %

Naily [24]3 years ago
3 0

Answer:

a.)

Fraction: 2/7

Decimal: 0.29 (rounded to nearest tenth)

Percent: 28.57%

b.)

Fraction: 5/7

Decimal: 0.7143

Percent: 71.43%

c.)

Fraction: 1/7

Decimal: 0.143 (rounded to nearest hundredth)

Percent: 14.29% (rounded to nearest tenth)

You might be interested in
What would you do when ok so he said yes would go?<br><br> 10x2=? <br> 10x11=?
Alla [95]

Answer:

10 x 2 = 20

10 x 11 = 110

Step-by-step explanation:

U can do 10 + 10 = 20

and

U can do 10+10+10+10+10+10+10+10+10+10+10 = 110.

Hope this helps. And what is the other question u are asking about?

5 0
3 years ago
All please Distributive property not multiplication
blagie [28]
You just multiply them normally because there are only two numbers

6 0
3 years ago
Use the equation to answer the following question y=(x-3(x+2)/(x+4)(x-4)(x+2)
givi [52]

Answer:

See below

Step-by-step explanation:

The given rational function is;

y=\frac{(x-3)(x+2)}{(x+4)(x-4)(x+2)}

The given function is not continuous where the denominator is equal to zero.

(x+4)(x-4)(x+2)=0

The function is discontinuous at x=-4,x=4,x=-2

b) The point at x=-2 is a removable discontinuity(hole) because (x+2) is common to both the numerator and the denominator.

The point at x=-4 and x=4 are  non-removable discontinuities(vertical asymptotes)

c) The equation of the vertical asymptotes are x=-4 and x=4

To find the equation of the horizontal asymptote, we take limit to infinity.

\lim_{x\to \infty}\frac{(x-3)(x+2)}{(x+4)(x-4)(x+2)}=0

The horizontal asymptote is y=0

8 0
3 years ago
6.28 x^2 + 43.96 x + 62.8 + 12.56 x + 25.12
Anuta_ua [19.1K]
The correct answer is 157
8 0
4 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • What is the estimated ansewr for 318×3
    13·2 answers
  • Write each mixed number as an imporer fraction:
    12·2 answers
  • Ellis is thinking of a prime number between 10and 20. This number has 26 as a multiple.
    10·1 answer
  • What time did Katie start practicing if ate snack for 15min, watched tv for 30 min and practiced for 45 minutes
    9·1 answer
  • The value of a in the equation ax + y = 5 , if x = 2 and y = 3 is a) – 1 b) 0 c) 1
    15·2 answers
  • What is 7909+1044 using algorithm
    6·1 answer
  • NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.No guessing please.
    11·1 answer
  • The scientist creates an equation that models her data for each tree so that she can predict the diameter in the future. Complet
    5·1 answer
  • The table below represents a linear relationship. Find the slope of the line.
    13·1 answer
  • the distance from Mayaro to Princes Town is 165 km . Palmyra is 50 km beyond Princes Town. How far is it from Mayaro to Palmyra
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!